Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first initial-boundary value problem with the homogeneous Dirichlet boundary condition and a compactly supported initial function is considered for a model second-order anisotropic parabolic equation in a cylindrical domain $D=(0,\infty)\times\Omega$. We find an upper bound that characterizes the dependence of the decay rate of solutions as $t\to\infty$ on the geometry of the unbounded domain $\Omega\subset\mathbb R_n$, $n\geq3$, and on nonlinearity exponents. We also obtain an estimate for the admissible decay rate of nonnegative solutions in unbounded domains; this estimate shows that the upper bound is sharp.
@article{TM_2012_278_a10,
     author = {L. M. Kozhevnikova and F. Kh. Mukminov},
     title = {Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {114--128},
     publisher = {mathdoc},
     volume = {278},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_278_a10/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - F. Kh. Mukminov
TI  - Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 114
EP  - 128
VL  - 278
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_278_a10/
LA  - ru
ID  - TM_2012_278_a10
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A F. Kh. Mukminov
%T Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 114-128
%V 278
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_278_a10/
%G ru
%F TM_2012_278_a10
L. M. Kozhevnikova; F. Kh. Mukminov. Stabilization of solutions of an anisotropic quasilinear parabolic equation in unbounded domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 278 (2012), pp. 114-128. http://geodesic.mathdoc.fr/item/TM_2012_278_a10/

[1] Guschin A.K., “Ob otsenkakh reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka”, Tr. MIAN, 126, 1973, 5–45

[2] Guschin A.K., “Stabilizatsiya reshenii vtoroi kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Mat. sb., 101:4 (1976), 459–499 | MR

[3] Ushakov V.I., “O povedenii reshenii tretei smeshannoi zadachi dlya parabolicheskikh uravnenii vtorogo poryadka pri $t\to \infty $”, Dif. uravneniya, 15:2 (1979), 310–320 | MR | Zbl

[4] Ushakov V.I., “Stabilizatsiya reshenii tretei smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka v netsilindricheskoi oblasti”, Mat. cb., 111:1 (1980), 95–115 | MR | Zbl

[5] Mukminov F.Kh., “Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Mat. sb., 111:4 (1980), 503–521 | MR | Zbl

[6] Mukminov F.Kh., “Ob ubyvanii normy resheniya smeshannoi zadachi dlya parabolicheskogo uravneniya vysokogo poryadka”, Dif. uravneniya, 23:10 (1987), 1772–1780 | MR | Zbl

[7] Tedeev A.F., “Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya kvazilineinogo parabolicheskogo uravneniya vysokogo poryadka”, Dif. uravneniya, 25:3 (1989), 491–498 | MR | Zbl

[8] Tedeev A.F., “Otsenki skorosti stabilizatsii pri $t\to \infty $ resheniya vtoroi smeshannoi zadachi dlya kvazilineinogo parabolicheskogo uravneniya vtorogo poryadka”, Dif. uravneniya, 27:10 (1991), 1795–1806 | MR | Zbl

[9] Tedeev A.F., “Stabilizatsiya resheniya tretei smeshannoi zadachi dlya kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka v netsilindricheskoi oblasti”, Izv. vuzov. Matematika, 1991, no. 1, 63–73 | MR | Zbl

[10] Kozhevnikova L.M., Mukminov F.Kh., “Otsenki skorosti stabilizatsii pri $t\to \infty $ resheniya pervoi smeshannoi zadachi dlya kvazilineinoi sistemy parabolicheskikh uravnenii vtorogo poryadka”, Mat. sb., 191:2 (2000), 91–131 | DOI | MR | Zbl

[11] Kozhevnikova L.M., “Stabilizatsiya resheniya pervoi smeshannoi zadachi dlya evolyutsionnogo kvaziellipticheskogo uravneniya”, Mat. sb., 196:7 (2005), 67–100 | DOI | MR | Zbl

[12] Karimov R.Kh., Kozhevnikova L.M., “Stabilizatsiya reshenii kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnymi granitsami”, Mat. sb., 201:9 (2010), 3–26 | DOI | MR | Zbl

[13] Degtyarev S.P., Tedeev A.F., “$L_1$–$L_\infty $-otsenki resheniya zadachi Koshi dlya anizotropnogo vyrozhdayuschegosya parabolicheskogo uravneniya s dvoinoi nelineinostyu i rastuschimi nachalnymi dannymi”, Mat. sb., 198:5 (2007), 45–66 | DOI | MR | Zbl

[14] Tedeev A.F., “Stabilizatsiya reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh uravnenii”, Ukr. mat. zhurn., 44:10 (1992), 1441–1450 | MR | Zbl

[15] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[16] Ladyzhenskaya O.A., Solonnikov V.A., Uraltseva N.N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[17] Mukminov F.Kh., Stabilizatsiya reshenii pervoi smeshannoi zadachi dlya sistemy uravnenii Nave–Stoksa, Dis. ... dokt. fiz.-mat. nauk, MIAN, M., 1994