Discrete autowaves in systems of delay differential--difference equations in ecology
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 101-143

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a theory of relaxation oscillations for a nonlinear scalar delay differential-difference equation that represents a modification of the well-known Hutchinson equation in ecology. In particular, we establish that a one-dimensional chain of diffusively coupled equations of this type exhibits the well-known buffer phenomenon. Namely, under an increase in the number of links in the chain and a consistent decrease in the coupling constant, the number of coexisting stable periodic motions indefinitely increases.
@article{TM_2012_277_a7,
     author = {A. Yu. Kolesov and N. Kh. Rozov},
     title = {Discrete autowaves in systems of delay differential--difference equations in ecology},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {101--143},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a7/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Discrete autowaves in systems of delay differential--difference equations in ecology
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 101
EP  - 143
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a7/
LA  - ru
ID  - TM_2012_277_a7
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Discrete autowaves in systems of delay differential--difference equations in ecology
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 101-143
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a7/
%G ru
%F TM_2012_277_a7
A. Yu. Kolesov; N. Kh. Rozov. Discrete autowaves in systems of delay differential--difference equations in ecology. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 101-143. http://geodesic.mathdoc.fr/item/TM_2012_277_a7/