Maximal inequality and ergodic theorems for Markov groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 33-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper shows that for actions of Markov semigroups, in particular, of finitely generated word hyperbolic groups, the Cesàro means of spherical averages converge almost everywhere for any function from the class $L^p$, $p>1$.
@article{TM_2012_277_a2,
     author = {A. I. Bufetov and A. V. Klimenko},
     title = {Maximal inequality and ergodic theorems for {Markov} groups},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a2/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - A. V. Klimenko
TI  - Maximal inequality and ergodic theorems for Markov groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 33
EP  - 48
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a2/
LA  - ru
ID  - TM_2012_277_a2
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A A. V. Klimenko
%T Maximal inequality and ergodic theorems for Markov groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 33-48
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a2/
%G ru
%F TM_2012_277_a2
A. I. Bufetov; A. V. Klimenko. Maximal inequality and ergodic theorems for Markov groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 33-48. http://geodesic.mathdoc.fr/item/TM_2012_277_a2/