Differential games with fixed terminal time and estimation of the instability degree of sets in these games
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 275-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contributes to the theory of differential games. A game problem of bringing a conflict-controlled system to a compact target set is analyzed. Sets in the position space that terminate on the target set and are not stable bridges are considered. The notion of stability defect of these sets is examined. It is demonstrated how the notion of stability defect can be used to construct sets with relatively good geometry that are at the same time convenient for the first player to play the game successfully.
@article{TM_2012_277_a18,
     author = {V. N. Ushakov and P. D. Lebedev and A. R. Matviychuk and A. G. Malev},
     title = {Differential games with fixed terminal time and estimation of the instability degree of sets in these games},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {275--287},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a18/}
}
TY  - JOUR
AU  - V. N. Ushakov
AU  - P. D. Lebedev
AU  - A. R. Matviychuk
AU  - A. G. Malev
TI  - Differential games with fixed terminal time and estimation of the instability degree of sets in these games
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 275
EP  - 287
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a18/
LA  - ru
ID  - TM_2012_277_a18
ER  - 
%0 Journal Article
%A V. N. Ushakov
%A P. D. Lebedev
%A A. R. Matviychuk
%A A. G. Malev
%T Differential games with fixed terminal time and estimation of the instability degree of sets in these games
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 275-287
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a18/
%G ru
%F TM_2012_277_a18
V. N. Ushakov; P. D. Lebedev; A. R. Matviychuk; A. G. Malev. Differential games with fixed terminal time and estimation of the instability degree of sets in these games. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 275-287. http://geodesic.mathdoc.fr/item/TM_2012_277_a18/

[1] Krasovskii N.N., “Igrovye zadachi dinamiki. I”, Izv. AN SSSR. Tekhn. kibernetika, 1969, no. 5, 3–12 | MR

[2] Krasovskii N.N., Subbotin A.I., “Smeshannoe upravlenie v differentsialnoi igre”, DAN SSSR, 188:4 (1969), 745–747 | MR

[3] Krasovskii N.N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970 | MR | Zbl

[4] Krasovskii N.N., Subbotin A.I., “O strukture differentsialnykh igr”, DAN SSSR, 190:3 (1970), 523–526 | MR

[5] Krasovskii N.N., Subbotin A.I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[6] Pontryagin L.S., “O lineinykh differentsialnykh igrakh. I”, DAN SSSR, 174:6 (1967), 1278–1280 ; “О линейных дифференциальных играх. II”, ДАН СССР, 175:4, 764–766 | Zbl | Zbl

[7] Pontryagin L.S., “Matematicheskaya teoriya optimalnykh protsessov i differentsialnye igry”, Tr. MIAN, 169, 1985, 119–158 | MR | Zbl

[8] Nikolskii M.S., “Ob alternirovannom integrale L.S. Pontryagina”, Mat. sb., 116:1 (1981), 136–144 | MR

[9] Krasovskii N.N., “K zadache unifikatsii differentsialnykh igr”, DAN SSSR, 226:6 (1976), 1260–1263 | MR

[10] Krasovskii N.N., “Unifikatsiya differentsialnykh igr”, Igrovye zadachi upravleniya, Tr. In-ta matematiki i mekhaniki UNTs AN SSSR, 24, 1977, 32–45 | MR

[11] Guseĭnov H.G., Subbotin A.I., Ushakov V.N., “Derivatives for multivalued mappings with applications to game-theoretical problems of control”, Probl. Control Inf. Theory., 14:3 (1985), 155–167 | MR | Zbl

[12] Kurzhanskii A.B., “Printsip sravneniya dlya uravnenii tipa Gamiltona–Yakobi v teorii upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:1 (2006), 173–183 | Zbl

[13] Kurzhanski A.B., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR | Zbl

[14] Gusev M.I., “Otsenki mnozhestv dostizhimosti mnogomernykh upravlyaemykh sistem s nelineinymi perekrestnymi svyazyami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 15:4 (2009), 82–94

[15] Filippova T.F., “Differentsialnye uravneniya ellipsoidalnykh otsenok mnozhestv dostizhimosti nelineinoi dinamicheskoi upravlyaemoi sistemy”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 223–232

[16] Chernousko F.L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem: Metod ellipsoidov, Nauka, M., 1988 | MR

[17] Ushakov V.N., Latushkin Ya.A., “Defekt stabilnosti mnozhestv v igrovykh zadachakh upravleniya”, Tr. In-ta matematiki i mekhaniki UrO RAN, 12:2 (2006), 178–194 | Zbl

[18] Ushakov V.N., Brykalov S.A., Latushkin Y.A., “Stable and unstable sets in problems of conflict control”, Funct. Diff. Eqns., 15:3–4 (2008), 309–338 | MR | Zbl

[19] Ushakov V.N., Malëv A.G., “K voprosu o defekte stabilnosti mnozhestv v igrovoi zadache o sblizhenii”, Tr. In-ta matematiki i mekhaniki UrO RAN, 16:1 (2010), 199–222

[20] Martynenko Yu.G., Formalskii A.M., “Mayatnik na podvizhnom osnovanii”, DAN., 439:6 (2011), 746–751 | MR | Zbl