An algorithm for reconstructing the intensity of a~source function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 178-191

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of reconstructing the intensity of a source function in a parabolic equation is considered. This problem is solved by an iterative algorithm based on a construction of feedback controls. The algorithm is robust with respect to information noise and computation errors.
@article{TM_2012_277_a11,
     author = {V. I. Maksimov},
     title = {An algorithm for reconstructing the intensity of a~source function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {178--191},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a11/}
}
TY  - JOUR
AU  - V. I. Maksimov
TI  - An algorithm for reconstructing the intensity of a~source function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 178
EP  - 191
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a11/
LA  - ru
ID  - TM_2012_277_a11
ER  - 
%0 Journal Article
%A V. I. Maksimov
%T An algorithm for reconstructing the intensity of a~source function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 178-191
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a11/
%G ru
%F TM_2012_277_a11
V. I. Maksimov. An algorithm for reconstructing the intensity of a~source function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 178-191. http://geodesic.mathdoc.fr/item/TM_2012_277_a11/