On the problem of control for ellipsoidal motions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 168-177

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the problem of target control for systems with ellipsoidal-valued trajectories that are allowed to be reconfigured throughout their motion. The solutions are proposed for linear-convex systems and are given both in the open-loop (programmed) form and in the form of closed-loop (feedback) strategies. The techniques are based on methods of nonlinear analysis and the Hamiltonian formalism, including matrix-valued dynamic programming equations for such systems.
@article{TM_2012_277_a10,
     author = {A. B. Kurzhanski},
     title = {On the problem of control for ellipsoidal motions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {168--177},
     publisher = {mathdoc},
     volume = {277},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_277_a10/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
TI  - On the problem of control for ellipsoidal motions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 168
EP  - 177
VL  - 277
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_277_a10/
LA  - ru
ID  - TM_2012_277_a10
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%T On the problem of control for ellipsoidal motions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 168-177
%V 277
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_277_a10/
%G ru
%F TM_2012_277_a10
A. B. Kurzhanski. On the problem of control for ellipsoidal motions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical control theory and differential equations, Tome 277 (2012), pp. 168-177. http://geodesic.mathdoc.fr/item/TM_2012_277_a10/