A note on the distribution of some additive functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 262-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f$ denote an additive arithmetical function with continuous limiting distribution $F$ on the integers. Then $f$ also has a limiting distribution $G$ on shifted primes. Under some growth conditions on the values of $f$ at primes, we provide optimal lower bounds for the modulus of continuity of $F$ and $G$, at all points from a specified infinite set.
@article{TM_2012_276_a21,
     author = {G\'erald Tenenbaum},
     title = {A note on the distribution of some additive functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {262--265},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a21/}
}
TY  - JOUR
AU  - Gérald Tenenbaum
TI  - A note on the distribution of some additive functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 262
EP  - 265
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a21/
LA  - en
ID  - TM_2012_276_a21
ER  - 
%0 Journal Article
%A Gérald Tenenbaum
%T A note on the distribution of some additive functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 262-265
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a21/
%G en
%F TM_2012_276_a21
Gérald Tenenbaum. A note on the distribution of some additive functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 262-265. http://geodesic.mathdoc.fr/item/TM_2012_276_a21/

[1] Babu G.J., “Absolutely continuous distribution functions of additive functions $f(p)=(\log p)^{-a}$, $a>0$”, Acta arith., 26:4 (1975), 401–403 | MR | Zbl

[2] de la Bretèche R., Tenenbaum G., “Sur la concentration de certaines fonctions additives”, Math. Proc. Cambridge Philos. Soc., 152:1 (2012), 179–189 | DOI | MR | Zbl

[3] Deshouillers J.-M., Hassani M., “A note on the distribution function of $\phi (p-1)/(p-1)$”, J. Aust. Math. Soc. (to appear)

[4] Erdős P., “On the smoothness of the asymptotic distribution of additive arithmetical functions”, Amer. J. Math., 61 (1939), 722–725 | DOI | MR

[5] Erdős P., Kátai I., “On the concentration of distribution of additive functions”, Acta sci. math., 41:3–4 (1979), 295–305 | MR | Zbl

[6] Erdős P., Wintner A., “Additive arithmetical functions and statistical independence”, Amer. J. Math., 61 (1939), 713–721 | DOI | MR

[7] Hildebrand A., “Additive and multiplicative functions on shifted primes”, Proc. London Math. Soc. Ser. 3, 59:2 (1989), 209–232 | DOI | MR | Zbl

[8] Kátai I., “On distribution of arithmetical functions on the set prime plus one”, Compos. math., 19 (1968), 278–289 | MR | Zbl

[9] Tenenbaum G., Introduction à la théorie analytique et probabiliste des nombres, Coll. Échelles, 3rd ed., Belin, Paris, 2008

[10] Tenenbaum G., Toulmonde V., “Sur le comportement local de la répartition de l'indicatrice d'Euler”, Funct. Approx. Comment. Math., 35 (2006), 321–338 | DOI | MR | Zbl

[11] Tenenbaum G., Exercices corrigés de théorie analytique et probabiliste des nombres. In collaboration with J. Wu., Cours spécialisés, 2, Soc. math. France, Paris, 1996 | MR

[12] Toulmonde V., “Module de continuité de la fonction de répartition de $\varphi (n)/n$”, Acta arith., 121:4 (2006), 367–402 | DOI | MR | Zbl

[13] Toulmonde V., “Sur les variations de la fonction de répartition de $\phi (n)/n$”, J. Number Theory, 120:1 (2006), 1–12 | DOI | MR | Zbl

[14] Toulmonde V., “Comportement au voisinage de $1$ de la fonction de répartition de $\phi (n)/n$”, Int. J. Number Theory, 5:8 (2009), 1347–1384 | DOI | MR | Zbl