On Karatsuba's problem related to Gram's law
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 162-172
Voir la notice de l'article provenant de la source Math-Net.Ru
A number of new results related to Gram's law in the theory of the Riemann zeta-function are proved. In particular, a lower bound is obtained for the number of ordinates of the zeros of the zeta-function that lie in a given interval and satisfy Gram's law.
@article{TM_2012_276_a12,
author = {M. A. Korolev},
title = {On {Karatsuba's} problem related to {Gram's} law},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {162--172},
publisher = {mathdoc},
volume = {276},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a12/}
}
M. A. Korolev. On Karatsuba's problem related to Gram's law. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 162-172. http://geodesic.mathdoc.fr/item/TM_2012_276_a12/