Transformations of zeta-sums
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 155-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate formula involving Gauss sums is given for short Dirichlet polynomials related to the zeta-function on the critical line.
@article{TM_2012_276_a11,
     author = {Matti Jutila},
     title = {Transformations of zeta-sums},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {155--161},
     publisher = {mathdoc},
     volume = {276},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2012_276_a11/}
}
TY  - JOUR
AU  - Matti Jutila
TI  - Transformations of zeta-sums
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2012
SP  - 155
EP  - 161
VL  - 276
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2012_276_a11/
LA  - en
ID  - TM_2012_276_a11
ER  - 
%0 Journal Article
%A Matti Jutila
%T Transformations of zeta-sums
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2012
%P 155-161
%V 276
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2012_276_a11/
%G en
%F TM_2012_276_a11
Matti Jutila. Transformations of zeta-sums. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, algebra, and analysis, Tome 276 (2012), pp. 155-161. http://geodesic.mathdoc.fr/item/TM_2012_276_a11/

[1] Huxley M.N., Area, lattice points, and exponential sums, Clarendon Press, Oxford, 1996 | MR | Zbl

[2] Jutila M., Lectures on a method in the theory of exponential sums, Tata Inst. Fundam. Res. Lect. Math. Phys., 80, Springer, Berlin, 1987 ; http://www.math.tifr.res.in/~publ/ln/tifr80.pdf | MR

[3] Jutila M., “Atkinson's formula for Hardy's function”, J. Number Theory, 129 (2009), 2853–2878 | DOI | MR | Zbl

[4] Karatsuba A.A., “On the distance between adjacent zeros of the Riemann zeta function lying on the critical line”, Proc. Steklov Inst. Math., 157 (1983), 51–66 | MR | Zbl | Zbl

[5] Karatsuba A.A., Voronin S.M., The Riemann zeta-function, W. de Gruyter, Berlin, 1992 | MR | Zbl