The Peano--Baker series
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 167-171.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note reviews the Peano–Baker series and its use to solve the general linear system of ODEs. The account is elementary and self-contained, and is meant as a pedagogic introduction to this approach, which is well known but usually treated as a folklore result or as a purely formal tool. Here, a simple convergence result is given, and two examples illustrate that the series can be used explicitly as well.
@article{TM_2011_275_a8,
     author = {Michael Baake and Ulrike Schl\"agel},
     title = {The {Peano--Baker} series},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {167--171},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a8/}
}
TY  - JOUR
AU  - Michael Baake
AU  - Ulrike Schlägel
TI  - The Peano--Baker series
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 167
EP  - 171
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a8/
LA  - en
ID  - TM_2011_275_a8
ER  - 
%0 Journal Article
%A Michael Baake
%A Ulrike Schlägel
%T The Peano--Baker series
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 167-171
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a8/
%G en
%F TM_2011_275_a8
Michael Baake; Ulrike Schlägel. The Peano--Baker series. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 167-171. http://geodesic.mathdoc.fr/item/TM_2011_275_a8/

[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions, with formulas, graphs, and mathematical tables, Dover, New York, 1965 | MR

[2] Amann H., Ordinary differential equations: An introduction to nonlinear analysis, W. de Gryuter, Berlin, 1990 | MR

[3] Baker H.F., “Note on the integration of linear differential equations”, Proc. London Math. Soc. Ser. 2, 2 (1905), 293–296 | DOI | MR

[4] Brockett R.W., Finite dimensional linear systems, Wiley, New York, 1970 | Zbl

[5] Dacunha J.J., “Transition matrix and generalized matrix exponential via the Peano–Baker series”, J. Difference Equat. and Appl., 11 (2005), 1245–1264 | DOI | MR | Zbl

[6] Delone B.N., The St. Petersburg school of number theory, Amer. Math. Soc., Providence, RI, 2005 | MR | Zbl

[7] Frazer R.A., Duncan W.J., Collar A.R., Elementary matrices and some applications to dynamics and differential equations, Cambridge Univ. Press, Cambridge, 1938 | MR | Zbl

[8] Fortmann T.E., Hitz K.L., An introduction to linear control systems, M. Dekker, New York, 1977 | MR | Zbl

[9] Gantmacher F.R., Applications of the theory of matrices, Interscience, New York, 1959 | MR | Zbl

[10] Higham N.J., Functions of matrices: Theory and computation, SIAM, Philadelphia, PA, 2008 | MR

[11] Hoek J., “On Campbell–Baker–Hausdorff formulae and time-ordered exponentials”, Nederl. Akad. Wetensch. Proc. B, 84 (1981), 47–56 | MR | Zbl

[12] Ince E.L., Ordinary differential equations, Repr. of the 1926 ed., Dover, New York, 1956 | MR

[13] Kailath T., Linear systems, Prentice-Hall, Englewood Cliffs, NJ, 1980 | MR | Zbl

[14] Kelley W.G., Peterson A.C., The theory of differential equations, 2nd ed., Springer, New York, 2010 | MR | Zbl

[15] Peano G., “Intégration par séries des équations différentielles linéaires”, Math. Ann., 32 (1888), 450–456 | DOI | MR

[16] Prepeliţă V., Doroftei M., Vasilache T., “Peano–Baker series convergence for matrix valued functions of bounded variation”, Balkan J. Geom. and Appl., 3:1 (1998), 111–118 | MR | Zbl

[17] Rindos A., Woolet S., Viniotis I., Trivedi K., “Exact methods for the transient analysis of nonhomogeneous continuous time Markov chains”, Computations with Markov chains, Proc. 2nd Intern. Workshop on Numerical Solution of Markov Chains, Raleigh, NC (USA), 1995, W.J. Stewart, Kluwer, Boston, MA, 1995, 121–133 | DOI | Zbl

[18] Schlägel U., Deterministische Rekombinations- und Selektionsdynamik, Diplomarbeit, Univ. Bielefeld, 2008