Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a3, author = {V. P. Grishukhin}, title = {Delaunay and {Voronoi} polytopes of the root lattice $E_7$ and of the dual lattice~$E_7^*$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {68--86}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a3/} }
TY - JOUR AU - V. P. Grishukhin TI - Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice~$E_7^*$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 68 EP - 86 VL - 275 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_275_a3/ LA - ru ID - TM_2011_275_a3 ER -
V. P. Grishukhin. Delaunay and Voronoi polytopes of the root lattice $E_7$ and of the dual lattice~$E_7^*$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 68-86. http://geodesic.mathdoc.fr/item/TM_2011_275_a3/
[1] Baranovskii E.P., “Razbienie evklidovykh prostranstv na L-mnogogranniki nekotorykh sovershennykh reshetok”, Tr. MIAN, 196, 1991, 27–46 | MR
[2] Baranovskii E.P., “The perfect lattices $\Gamma (\mathfrak A^n)$, and the covering density of $\Gamma (\mathfrak A^9)$”, Eur. J. Comb., 15 (1994), 317–323 | DOI | MR | Zbl
[3] Brouwer A.E., Cohen A.M., Neumaier A., Distance-regular graphs, Springer, Berlin, 1989 | MR | Zbl
[4] Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Grundl. math. Wissensch., 290, Springer, Berlin, 1988 | DOI | MR | Zbl
[5] Conway J.H., Sloane N.J.A., “Low-dimensional lattices. II: Subgroups of $\mathrm {GL}(n,\mathbb Z)$”, Proc. Roy. Soc. London A, 419 (1988), 29–68 | DOI | MR | Zbl
[6] Conway J.H., Sloane N.J.A., “The cell structures of certain lattices”, Miscellanea mathematica, Springer, Berlin, 1991, 71–107 | DOI | MR
[7] Coxeter H.S.M., “The pure Archimedian polytopes in six and seven dimensions”, Math. Proc. Cambridge Philos. Soc., 24 (1928), 1–9 | DOI | Zbl
[8] Coxeter H.S.M., “Extreme forms”, Can. J. Math., 3 (1951), 391–441 | DOI | MR | Zbl
[9] Coxeter H.S.M., Regular polytopes, 3rd ed., Dover, New York, 1973 | MR
[10] Coxeter H.S.M., “The evolution of Coxeter–Dynkin diagrams”, Nieuw Arch. Wiskd. Ser. 4., 9 (1991), 233–248 | MR | Zbl
[11] Deza M.M., Laurent M., Geometry of cuts and metrics, Springer, Berlin, 1997 | MR | Zbl
[12] Dolbilin N.P., “Svoistva granei paralleloedrov”, Tr. MIAN, 266, 2009, 112–126 | MR | Zbl
[13] Gosset T., “On the regular and semi-regular figures in space of $n$ dimensions”, Messenger Math., 29 (1900), 43–48
[14] Grishukhin V.P., “Paralleloedry nenulevoi tolschiny”, Mat. sb., 195:5 (2004), 59–78 | DOI | MR | Zbl
[15] Pervin E., “The Voronoi cells of the $E_6^*$ and $E_7^*$ lattices”, Coding theory, design theory, group theory, Proc. Marshall Hall Conf., Vermont, Sept. 13–18, 1990, J. Wiley Sons, New York, 1993, 243–248 http://home.digital.net/~pervin/publications/vermont.html | MR
[16] Worley R.T., “The Voronoi region of $E_7^*$”, SIAM J. Discr. Math., 1 (1988), 134–141 | DOI | MR | Zbl