Transference inequalities for multiplicative Diophantine exponents
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 227-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove inequalities for multiplicative analogues of Diophantine exponents; these inequalities are similar to the ones known in the classical case. Particularly, we show that a matrix is badly approximable if and only if its transpose is badly approximable and establish some inequalities connecting multiplicative exponents with ordinary ones.
@article{TM_2011_275_a14,
     author = {Oleg N. German},
     title = {Transference inequalities for multiplicative {Diophantine} exponents},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {227--239},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a14/}
}
TY  - JOUR
AU  - Oleg N. German
TI  - Transference inequalities for multiplicative Diophantine exponents
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 227
EP  - 239
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a14/
LA  - en
ID  - TM_2011_275_a14
ER  - 
%0 Journal Article
%A Oleg N. German
%T Transference inequalities for multiplicative Diophantine exponents
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 227-239
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a14/
%G en
%F TM_2011_275_a14
Oleg N. German. Transference inequalities for multiplicative Diophantine exponents. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 227-239. http://geodesic.mathdoc.fr/item/TM_2011_275_a14/

[1] Schmidt W.M., Wang Y., “A note on a transference theorem of linear forms”, Sci. Sin., 22:3 (1979), 276–280 | MR | Zbl

[2] Wang Y., Yu K., “A note on some metrical theorems in Diophantine approximation”, Chin. Ann. Math., 2 (1981), 1–12 | MR | Zbl

[3] Cassels J.W.S., An introduction to Diophantine approximation, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl

[4] Cassels J.W.S., Swinnerton-Dyer H.P.F., “On the product of three homogeneous linear forms and indefinite ternary quadratic forms”, Philos. Trans. Roy. Soc. London A, 248 (1955), 73–96 | DOI | MR | Zbl

[5] Dyson F.J., “On simultaneous Diophantine approximations”, Proc. London Math. Soc. Ser. 2, 49 (1947), 409–420 | DOI | MR | Zbl

[6] Mahler K., “Ein Übertragungsprinzip für lineare Ungleichungen”, Čas. Pěst. Mat. Fys., 68 (1939), 85–92 | MR | Zbl

[7] Maler K., “Ob odnoi teoreme Daisona”, Mat. sb., 26:3 (1950), 457–462 | MR

[8] Khintchine A.Ya., “Über eine Klasse linearer diophantischer Approximationen”, Rend. Circ. Mat. Palermo, 50 (1926), 170–195 | DOI | Zbl

[9] Bugeaud Y., “Multiplicative Diophantine approximation”, Dynamical systems and Diophantine approximation, Proc. Conf. Inst. H. Poincaré, Soc. math. France, Paris, 2009, 105–125 | MR | Zbl

[10] German O.N., On Diophantine exponents and Khintchine's transference principle, E-print, 2010

[11] Vaaler J.D., “A geometric inequality with applications to linear forms”, Pac. J. Math., 83:2 (1979), 543–553 | DOI | MR | Zbl

[12] Ball K., “Volumes of sections of cubes and related problems”, Geometric aspects of functional analysis, Isr. Semin., GAFA, 1987–1988, Lect. Notes Math., 1376, Springer, Berlin, 1989, 251–260 | DOI | MR

[13] Bonnesen T., Fenchel W., Theorie der konvexen Körper, Springer, Berlin, 1934 | MR | Zbl

[14] Jarník V., “Zum Khintchineschen “Übertragungssatz””, Trav. Inst. Math. Tbilissi, 3 (1938), 193–212 | Zbl