Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_275_a12, author = {R. Connelly}, title = {Combining globally rigid frameworks}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {202--209}, publisher = {mathdoc}, volume = {275}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a12/} }
R. Connelly. Combining globally rigid frameworks. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 202-209. http://geodesic.mathdoc.fr/item/TM_2011_275_a12/
[1] Alfakih A.Y., Ye Y., On affine motions and bar frameworks in general position, E-print, 2010, arXiv: 1009.3318 [math.MG] | MR | Zbl
[2] Berg A.R., Jordán T., “A proof of Connelly's conjecture on 3-connected circuits of the rigidity matroid”, J. Comb. Theory B, 88:1 (2003), 77–97 | DOI | MR | Zbl
[3] Connelly R., “Rigidity and energy”, Invent. math., 66:1 (1982), 11–33 | DOI | MR | Zbl
[4] Connelly R., “On generic global rigidity”, Applied geometry and discrete mathematics, DIMACS, Ser. Discr. Math. and Theor. Comput. Sci., 4, Amer. Math. Soc., Providence, RI, 1991, 147–155 | MR
[5] Connelly R., “Generic global rigidity”, Discr. and Comput. Geom., 33:4 (2005), 549–563 | DOI | MR | Zbl
[6] Connelly R., Jordán T., Whiteley W.J., Generic global rigidity of body–bar frameworks, EGRES Tech. Rep. No. 2009-13, Egerváry Res. Group, Budapest, 2009 http://www.cs.elte.hu/egres/www/tr-09-13.html
[7] Connelly R., Whiteley W., “Second-order rigidity and prestress stability for tensegrity frameworks”, SIAM J. Discr. Math., 9:3 (1996), 453–491 | DOI | MR | Zbl
[8] Connelly R., Whiteley W., “Global rigidity: The effect of coning”, Discr. and Comput. Geom., 43:4 (2010), 717–735 | DOI | MR | Zbl
[9] Frank S., Jiang J., “New classes of counterexamples to Hendrickson's global rigidity conjecture”, Discr. and Comput. Geom., 45:3 (2011), 574–591 | DOI | MR | Zbl
[10] Gortler S.J., Healy A.D., Thurston D.P., “Characterizing generic global rigidity”, Amer. J. Math., 132:4 (2010), 897–939 | DOI | MR | Zbl
[11] Gortler S.J., Thurston D.P., Characterizing the universal rigidity of generic frameworks, E-print, 2009, arXiv: 1001.0172 [math.MG] | MR
[12] Graver J., Servatius B., Servatius H., Combinatorial rigidity, Grad. Stud. Math., 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[13] Graver J.E., Counting on frameworks: Mathematics to aid the design of rigid structures, Dolciani Math. Expositions, 25, Math. Assoc. Amer., Washington, DC, 2001 | MR | Zbl
[14] Hendrickson B., “Conditions for unique graph realizations”, SIAM J. Comput., 21:1 (1992), 65–84 | DOI | MR | Zbl
[15] Jackson B., Jordán T., “A sufficient connectivity condition for generic rigidity in the plane”, Discr. Appl. Math., 157:8 (2009), 1965–1968 | DOI | MR | Zbl
[16] Jackson B., Jordán T., Szabadka Z., “Globally linked pairs of vertices in equivalent realizations of graphs”, Discr. and Comput. Geom., 35:3 (2006), 493–512 | DOI | MR | Zbl
[17] Jacobs D.J., Hendrickson B., “An algorithm for two-dimensional rigidity percolation: The pebble game”, J. Comput. Phys., 137:2 (1997), 346–365 | DOI | MR | Zbl
[18] Jacobs M., Connecting global and universal rigidity, E-print, 2010, arXiv: 1011.4122 [math.MG]
[19] Jordán T., Szabadka Z., “Operations preserving the global rigidity of graphs and frameworks in the plane”, Comput. Geom., 42:6–7 (2009), 511–521 | DOI | MR | Zbl
[20] Ratmanski K., Universally rigid framework attachments, E-print, 2010, arXiv: 1011.4094 [math.MG]
[21] Sun T., Ye C., Rigidity of graph joins and Hendrickson's conjecture, E-print, 2010, arXiv: 1011.3208 [math.MG]
[22] Whiteley W., “The union of matroids and the rigidity of frameworks”, SIAM J. Discr. Math., 1:2 (1988), 237–255 | DOI | MR | Zbl