Nerve complexes and moment--angle spaces of convex polytopes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 22-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce spherical nerve complexes that are a far-reaching generalization of simplicial spheres, and consider the differential ring of simplicial complexes. We show that spherical nerve complexes form a subring of this ring, and define a homomorphism from the ring of polytopes to this subring that maps each polytope $P$ to the nerve $K_P$ of the cover of the boundary $\partial P$ by facets. We develop a theory of nerve complexes and apply it to the moment–angle spaces $\mathcal Z_P$ of convex polytopes $P$. In the case of a polytope $P$ with $m$ facets, its moment–angle space $\mathcal Z_P$ is defined by the canonical embedding in the cone $\mathbb R_\geq^m$. It is well-known that the space $\mathcal Z_P$ is homeomorphic to the polyhedral product $(D^2,S^1)^{\partial P^*}$ if the polytope $P$ is simple. We show that the homotopy equivalence $\mathcal Z_P\simeq(D^2,S^1)^{K_P}$ holds in the general case. On the basis of bigraded Betti numbers of simplicial complexes, we construct a new class of combinatorial invariants of convex polytopes. These invariants take values in the ring of polynomials in two variables and are multiplicative with respect to the direct product or join of polytopes. We describe the relation between these invariants and the well-known $f$-polynomials of polytopes. We also present examples of convex polytopes whose flag numbers (in particular, $f$-polynomials) coincide, while the new invariants are different.
@article{TM_2011_275_a1,
     author = {A. A. Aizenberg and V. M. Buchstaber},
     title = {Nerve complexes and moment--angle spaces of convex polytopes},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {22--54},
     publisher = {mathdoc},
     volume = {275},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_275_a1/}
}
TY  - JOUR
AU  - A. A. Aizenberg
AU  - V. M. Buchstaber
TI  - Nerve complexes and moment--angle spaces of convex polytopes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 22
EP  - 54
VL  - 275
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_275_a1/
LA  - ru
ID  - TM_2011_275_a1
ER  - 
%0 Journal Article
%A A. A. Aizenberg
%A V. M. Buchstaber
%T Nerve complexes and moment--angle spaces of convex polytopes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 22-54
%V 275
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_275_a1/
%G ru
%F TM_2011_275_a1
A. A. Aizenberg; V. M. Buchstaber. Nerve complexes and moment--angle spaces of convex polytopes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Classical and modern mathematics in the wake of Boris Nikolaevich Delone, Tome 275 (2011), pp. 22-54. http://geodesic.mathdoc.fr/item/TM_2011_275_a1/

[1] Baskakov I.V., “Kogomologii $K$-stepenei prostranstv i kombinatorika simplitsialnykh razbienii”, UMN, 57:5 (2002), 147–148 | DOI | MR | Zbl

[2] Baskakov I.V., Bukhshtaber V.M., Panov T.E., “Algebry kletochnykh kotsepei i deistviya torov”, UMN, 59:3 (2004), 159–160 | DOI | MR | Zbl

[3] Bukhshtaber V.M., “Koltso prostykh mnogogrannikov i differentsialnye uravneniya”, Tr. MIAN, 263, 2008, 18–43 | MR

[4] Bukhshtaber V.M., Erokhovets N.Yu., “Mnogogranniki, chisla Fibonachchi, algebry Khopfa i kvazisimmetricheskie funktsii”, UMN, 66:2 (2011), 67–162 | DOI | MR | Zbl

[5] Bukhshtaber V.M., Panov T.E., “Deistviya torov, kombinatornaya topologiya i gomologicheskaya algebra”, UMN, 55:5 (2000), 3–106 | DOI | MR | Zbl

[6] Bukhshtaber V.M., Panov T.E., Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[7] Gaifullin A.A., “Postroenie kombinatornykh mnogoobrazii s zadannymi naborami linkov vershin”, Izv. RAN. Ser. mat., 72:5 (2008), 3–62 | DOI | MR | Zbl

[8] Barnette D., “Diagrams and Schlegel diagrams”, Combinatorial structures and their applications, Proc. Intern. Conf., Calgary, 1969, Gordon and Breach, New York, 1970, 1–4 | MR

[9] Bayer M.M., Billera L.J., “Generalized Dehn–Sommerville relations for polytopes, spheres and Eulerian partially ordered sets”, Invent. math., 79:1 (1985), 143–157 | DOI | MR | Zbl

[10] Billera L.J., Filliman P., Sturmfels B., “Constructions and complexity of secondary polytopes”, Adv. Math., 83:2 (1990), 155–179 | DOI | MR | Zbl

[11] Bosio F., Meersseman L., “Real quadrics in $\mathbb {C}^n$, complex manifolds and convex polytopes”, Acta math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[12] Bruns W., Gubeladze J., “Combinatorial invariance of Stanley–Reisner rings”, Georgian Math. J., 3:4 (1996), 315–318 | DOI | MR | Zbl

[13] Buchstaber V.M., Panov T.E., Ray N., “Spaces of polytopes and cobordism of quasitoric manifolds”, Moscow Math. J., 7:2 (2007), 219–242 | MR | Zbl

[14] Davis M.W., Januszkiewicz T., “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[15] Franz M., “The integral cohomology of toric manifolds”, Tr. MIAN, 252, 2006, 61–70 | MR

[16] Hirschhorn P.S., Model categories and their localizations, Math. Surv. and Monogr., 99, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[17] Hochster M., “Cohen–Macaulay rings, combinatorics, and simplicial complexes”, Ring theory II, Proc. 2nd Oklahoma Conf., 1975, Lect. Notes Pure and Appl. Math., 26, M. Dekker, New York, 1977, 171–223 | MR

[18] Mac Lane S., Categories for the working mathematician, Grad. Texts Math., 5, 2nd ed., Springer, New York, 1998 | MR

[19] Panov T.E., “Cohomology of face rings, and torus actions”, Surveys in contemporary mathematics, LMS Lect. Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 165–201 | MR | Zbl

[20] Panov T.E., Ray N., “Categorical aspects of toric topology”, Toric topology, Contemp. Math., 460, M. Harada, Y. Karshon, M. Masuda, T. Panov, Amer. Math. Soc., Providence, RI, 2008, 293–322 | DOI | MR | Zbl

[21] Rota G.-C., “On the foundations of combinatorial theory. I: Theory of Möbius functions”, Ztschr. Wahrscheinlichkeitstheor. und verw. Geb., 2:4 (1964), 340–368 | DOI | MR | Zbl

[22] Stanley R.P., Enumerative combinatorics, V. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1986 | Zbl

[23] Stanley R.P., Combinatorics and commutative algebra, Prog. Math., 41, Birkhäuser, Boston, MA, 1996 | MR | Zbl

[24] Welker V., Ziegler G.M., Živaljević R.T., “Homotopy colimits—comparison lemmas for combinatorial applications”, J. reine und angew. Math., 509 (1999), 117–149 | DOI | MR | Zbl

[25] Ziegler G.M., Lectures on polytopes, Springer, New York, 2007 | MR