The geometry of maximum principle
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 5-27

Voir la notice de l'article provenant de la source Math-Net.Ru

An invariant formulation of the maximum principle in optimal control is presented, and some second-order invariants are discussed.
@article{TM_2011_273_a0,
     author = {A. A. Agrachev and R. V. Gamkrelidze},
     title = {The geometry of maximum principle},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {273},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_273_a0/}
}
TY  - JOUR
AU  - A. A. Agrachev
AU  - R. V. Gamkrelidze
TI  - The geometry of maximum principle
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 5
EP  - 27
VL  - 273
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_273_a0/
LA  - ru
ID  - TM_2011_273_a0
ER  - 
%0 Journal Article
%A A. A. Agrachev
%A R. V. Gamkrelidze
%T The geometry of maximum principle
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 5-27
%V 273
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_273_a0/
%G ru
%F TM_2011_273_a0
A. A. Agrachev; R. V. Gamkrelidze. The geometry of maximum principle. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Modern problems of mathematics, Tome 273 (2011), pp. 5-27. http://geodesic.mathdoc.fr/item/TM_2011_273_a0/