Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_272_a3, author = {D. Bettinelli and R. Ferrari and A. Quadri}, title = {Of {Higgs,} unitarity and other questions}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {29--45}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a3/} }
D. Bettinelli; R. Ferrari; A. Quadri. Of Higgs, unitarity and other questions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 29-45. http://geodesic.mathdoc.fr/item/TM_2011_272_a3/
[1] Cornwall J.M., Levin D.N., Tiktopoulos G., “Derivation of gauge invariance from high-energy unitarity bounds on the $S$ matrix”, Phys. Rev. D, 10 (1974), 1145 ; 11 (1975), 972 | DOI | DOI
[2] Lee B.W., Quigg C., Thacker H.B., “Weak interactions at very high energies: The role of the Higgs-boson mass”, Phys. Rev. D, 16 (1977), 1519 | DOI
[3] Weldon H.A., “Effects of multiple Higgs bosons on tree unitarity”, Phys. Rev. D, 30 (1984), 1547 | DOI
[4] Chanowitz M.S., Gaillard M.K., “The TeV physics of strongly interacting W's and Z's”, Nucl. Phys. B, 261 (1985), 379 | DOI
[5] Gounaris G.J., Kögerler R., Neufeld H., “Relationship between longitudinally polarized vector bosons and their unphysical scalar partners”, Phys. Rev. D, 34 (1986), 3257 | DOI
[6] Denner A., Dittmaier S., Hahn T., “Radiative corrections to $ZZ\to ZZ$ in the electroweak standard model”, Phys. Rev. D, 56 (1997), 117 | DOI
[7] Denner A., Hahn T., “Radiative corrections to $\mathrm W^+\mathrm W^-\to \mathrm W^+\mathrm W^-$ in the electroweak standard model”, Nucl. Phys. B, 525 (1998), 27 | DOI
[8] Ferrari R., “Endowing the nonlinear sigma model with a flat connection structure: A way to renormalization”, J. High Energy Phys., 2005, no. 8, 048 | DOI | MR
[9] Ferrari R., Quadri A., “Weak power-counting theorem for the renormalization of the nonlinear sigma model in four dimensions”, Intern. J. Theor. Phys., 45 (2006), 2497 | DOI | Zbl
[10] Ferrari R., Quadri A., “Renormalization of the non-linear sigma model in four dimensions: A two-loop example”, J. High Energy Phys., 2006, no. 1, 003 | DOI | MR | Zbl
[11] Bettinelli D., Ferrari R., Quadri A., “The hierarchy principle and the large mass limit of the linear sigma model”, Intern. J. Theor. Phys., 46 (2007), 2560 | DOI | Zbl
[12] Bettinelli D., Ferrari R., Quadri A., “Further comments on the symmetric subtraction of the nonlinear sigma model”, Intern. J. Mod. Phys. A, 23 (2008), 211 | DOI | MR | Zbl
[13] Bettinelli D., Ferrari R., Quadri A., “Path-integral over non-linearly realized groups and hierarchy solutions”, J. High Energy Phys., 2007, no. 3, 065 | DOI | MR
[14] Bettinelli D., Ferrari R., Quadri A., “Massive Yang–Mills theory based on the nonlinearly realized gauge group”, Phys. Rev. D, 77 (2008), 045021 | DOI | MR
[15] Bettinelli D., Ferrari R., Quadri A., “One-loop self-energy and counterterms in a massive Yang–Mills theory based on the nonlinearly realized gauge group”, Phys. Rev. D, 77 (2008), 105012 | DOI | MR
[16] Bettinelli D., Ferrari R., Quadri A., “The $\mathrm {SU}(2)\otimes \mathrm U(1)$ electroweak model based on the nonlinearly realized gauge group”, Intern. J. Mod. Phys. A, 24 (2009), 2639 | DOI | Zbl
[17] Bettinelli D., Ferrari R., Quadri A., “The $\mathrm {SU}(2)\otimes \mathrm {U}(1)$ electroweak model based on the nonlinearly realized gauge group. II: Functional equations and the weak power-counting”, Acta phys. Pol. B, 41 (2010), 597
[18] Bettinelli D., Ferrari R., Quadri A., “One-loop self-energies in the electroweak model with a nonlinearly realized gauge group”, Phys. Rev. D, 79 (2009), 125028 | DOI
[19] Ferrari R., “On the renormalization of the complex scalar free field theory”, J. Math. Phys., 51 (2010), 032305 | DOI | MR