Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_272_a17, author = {Michael M\"uller-Preussker}, title = {The puzzling infrared of {QCD:} {The} {Landau} gauge case}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {202--211}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a17/} }
Michael Müller-Preussker. The puzzling infrared of QCD: The Landau gauge case. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 202-211. http://geodesic.mathdoc.fr/item/TM_2011_272_a17/
[1] Chetyrkin K.G., “Four-loop renormalization of QCD: Full set of renormalization constants and anomalous dimensions”, Nucl. Phys. B, 710 (2005), 499, arXiv: hep-ph/0405193 | DOI | Zbl
[2] Chetyrkin K.G., Maier A., Wilson expansion of QCD propagators at three loops: Operators of dimension two and three, E-print, 2009, arXiv: 0911.0594 | MR | Zbl
[3] Chernodub M.N., Gubarev F.V., Polikarpov M.I., Zakharov V.I., “Confinement and short distance physics”, Phys. Lett. B, 475 (2000), 303, arXiv: hep-ph/0003006 | DOI | MR
[4] Chernodub M.N., Ishiguro K., Mori Y., Nakamura Y., Polikarpov M.I., Sekido T., Suzuki T., Zakharov V.I., “Vacuum type of $\mathrm {SU}(2)$ gluodynamics in maximally Abelian and Landau gauges”, Phys. Rev. D, 72 (2005), 074505, arXiv: hep-lat/0508004 | DOI
[5] Boucaud P., Le Yaouanc A., Leroy J.P., Micheli J., Pène O., Rodríguez-Quintero J., “Testing the Landau gauge operator product expansion on the lattice with a $\langle A^2\rangle $ condensate”, Phys. Rev. D, 63 (2001), 114003, arXiv: hep-ph/0101302 | DOI
[6] Blossier B., Boucaud P., De soto F., Morenas V., Gravina M., Pène O., Rodríguez-Quintero J., Ghost–gluon coupling, power corrections and $\Lambda _{\overline {\textup {MS}}}$ from twisted-mass lattice QCD at $N_f=2$, E-print, 2010, arXiv: 1005.5290 | Zbl
[7] Alkofer R., von Smekal L., “The infrared behaviour of QCD Green's functions: Confinement, dynamical symmetry breaking, and hadrons as relativistic bound states”, Phys. Rep., 353 (2001), 281, arXiv: hep-ph/0007355 | DOI | MR | Zbl
[8] Alkofer R., Eichmann G., Krassnigg A., Nicmorus D., Hadron properties from QCD bound-state equations: A status report, E-print, 2009, arXiv: 0912.3105
[9] Parisi G., Petronzio R., “On low energy tests of QCD”, Phys. Lett. B, 94 (1980), 51 | DOI | MR
[10] Field J.H., “Phenomenological analysis of gluon mass effects in inclusive radiative decays of the $\mathrm J/\psi $ and $\Upsilon $”, Phys. Rev. D, 66 (2002), 013013, arXiv: hep-ph/0101158 | DOI
[11] Natale A.A., QCD phenomenology with infrared finite SDE solutions, E-print, 2009, arXiv: 0910.5689 | Zbl
[12] Gribov V.N., “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139 (1978), 1 | DOI | MR
[13] Zwanziger D., “Fundamental modular region, Boltzmann factor and area law in lattice theory”, Nucl. Phys. B, 412 (1994), 657 | DOI | MR | Zbl
[14] Kugo T., Ojima I., “Local covariant operator formalism of non-Abelian gauge theories and quark confinement problem”, Prog. Theor. Phys. Suppl., 66 (1979), 1 | DOI | MR
[15] Zwanziger D., Some exact infrared properties of gluon and ghost propagators and long-range force in QCD, E-print, 2009, arXiv: 0904.2380
[16] Wetterich C., “Exact evolution equation for the effective potential”, Phys. Lett. B, 301 (1993), 90 | DOI
[17] von Smekal L., Hauck A., Alkofer R., “Infrared behavior of gluon and ghost propagators in Landau gauge QCD”, Phys. Rev. Lett., 79 (1997), 3591, arXiv: hep-ph/9705242 | DOI
[18] von Smekal L., Hauck A., Alkofer R., “A solution to coupled Dyson–Schwinger equations for gluons and ghosts in Landau gauge”, Ann. Phys., 267 (1998), 1, arXiv: hep-ph/9707327 | DOI | Zbl
[19] Lerche C., von Smekal L., “Infrared exponent for gluon and ghost propagation in Landau gauge QCD”, Phys. Rev. D, 65 (2002), 125006, arXiv: hep-ph/0202194 | DOI
[20] Zwanziger D., “Nonperturbative Landau gauge and infrared critical exponents in QCD”, Phys. Rev. D, 65 (2002), 094039, arXiv: hep-th/0109224 | DOI
[21] Pawlowski J.M., Litim D.F., Nedelko S., von Smekal L., “Infrared behavior and fixed points in Landau-gauge QCD”, Phys. Rev. Lett., 93 (2004), 152002, arXiv: hep-th/0312324 | DOI
[22] Fischer C.S., Pawlowski J.M., “Uniqueness of infrared asymptotics in Landau gauge Yang–Mills theory”, Phys. Rev. D, 75 (2007), 025012, arXiv: hep-th/0609009 | DOI | MR
[23] Fischer C.S., Maas A., Pawlowski J.M., “On the infrared behavior of Landau gauge Yang–Mills theory”, Ann. Phys., 324 (2009), 2408, arXiv: 0810.1987 | DOI | MR | Zbl
[24] Shirkov D.V., Solovtsov I.L., “Analytic model for the QCD running coupling with universal $\bar \alpha _s(0)$ value”, Phys. Rev. Lett., 79 (1997), 1209, arXiv: hep-ph/9704333 | DOI
[25] Shirkov D.V., “K povedeniyu effektivnoi svyazi KKhD v infrakrasnoi oblasti”, TMF, 132:3 (2002), 484 ; Shirkov D.V., “Behavior of the effective QCD coupling in the infrared region”, Theor. and Math. Phys., 132 (2002), 1309–1319 ; arXiv: hep-ph/0208082 | DOI | MR | Zbl | DOI
[26] Boucaud P., Leroy J.P., Le Yaouanc A., Lokhov A.Y., Micheli J., Pène O., Rodríguez-Quintero J., Roiesnel C., “Constraints on the IR behaviour of gluon and ghost propagator from Ward–Slavnov–Taylor identities”, Eur. Phys. J. A., 31 (2007), 750, arXiv: hep-ph/0701114 | DOI
[27] Dudal D., Sorella S.P., Vandersickel N., Verschelde H., “New features of the gluon and ghost propagator in the infrared region from the Gribov–Zwanziger approach”, Phys. Rev. D, 77 (2008), 071501, arXiv: 0711.4496 | DOI | MR
[28] Aguilar A.C., Binosi D., Papavassiliou J., “Gluon and ghost propagators in the Landau gauge: Deriving lattice results from Schwinger–Dyson equations”, Phys. Rev. D, 78 (2008), 025010, arXiv: 0802.1870 | DOI | MR
[29] Boucaud P., Leroy J.P., Le Yaouanc A., Micheli J., Pène O., Rodríguez-Quintero J., “IR finiteness of the ghost dressing function from numerical resolution of the ghost SD equation”, J. High Energy Phys., 2008, no. 6, 012, arXiv: 0801.2721 | DOI
[30] Boucaud P., Leroy J.P., Le Yaouanc A., Micheli J., Pène O., Rodríguez-Quintero J., “On the IR behaviour of the Landau-gauge ghost propagator”, J. High Energy Phys., 2008, no. 6, 099, arXiv: 0803.2161 | DOI
[31] Fischer C.S., Maas A., Pawlowski J.M., “Aspects of confinement from QCD correlation functions”, Proc. Sci. 2008. Confinement 8, 043, arXiv: 0812.2745 | Zbl
[32] Braun J., Gies H., Pawlowski J.M., “Quark confinement from colour confinement”, Phys. Lett. B, 684 (2010), 262, arXiv: 0708.2413 | DOI
[33] Dudal D., Sorella S.P., Vandersickel N., Verschelde H., “Gribov no-pole condition, Zwanziger horizon function, Kugo–Ojima confinement criterion, boundary conditions, BRST breaking and all that”, Phys. Rev. D, 79 (2009), 121701, arXiv: 0904.0641 | DOI | MR
[34] Dudal D., Sorella S.P., Vandersickel N., More on the renormalization of the horizon function of the Gribov–Zwanziger action and the Kugo–Ojima Green function(s), E-print, 2010, arXiv: 1001.3103
[35] Cucchieri A., Mendes T., “What's up with IR gluon and ghost propagators in Landau gauge? A puzzling answer from huge lattices”, Proc. Sci. 2007. LATTICE, 2007, 297, arXiv: 0710.0412
[36] Bakeev T., Ilgenfritz E.-M., Müller-Preussker M., Mitrjushkin V.K., “Practical problems to compute the ghost propagator in $SU(2)$ lattice gauge theory”, Phys. Rev. D, 69 (2004), 074507, arXiv: hep-lat/0311041 | DOI
[37] Sternbeck A., Ilgenfritz E.-M., Müller-Preussker M., Schiller A., “Towards the infrared limit in $SU(3)$ Landau gauge lattice gluodynamics”, Phys. Rev. D, 72 (2005), 014507, arXiv: hep-lat/0506007 | DOI
[38] Ilgenfritz E.-M., Müller-Preussker M., Sternbeck A., Schiller A., Bogolubsky I.L., “Landau gauge gluon and ghost propagators from lattice QCD”, Braz. J. Phys., 37 (2007), 193, arXiv: hep-lat/0609043 | DOI
[39] Fischer C.S., Maas A., Pawlowski J.M., von Smekal L., “Large volume behaviour of Yang–Mills propagators”, Ann. Phys., 322 (2007), 2916, arXiv: hep-ph/0701050 | DOI | MR | Zbl
[40] Cucchieri A., Mendes T., “Constraints on the infrared behavior of the gluon propagator in Yang–Mills theories”, Phys. Rev. Lett., 100 (2008), 241601, arXiv: 0712.3517 | DOI | MR | Zbl
[41] Sternbeck A., von Smekal L., Leinweber D.B., Williams A.G., “Comparing SU(2) to SU(3) gluodynamics on large lattices”, Proc. Sci. 2007. LATTICE, 2007, 340, arXiv: 0710.1982
[42] Cucchieri A., Mendes T., “Constraints on the infrared behavior of the ghost propagator in Yang–Mills theories”, Phys. Rev. D, 78 (2008), 094503, arXiv: 0804.2371 | DOI | MR
[43] Bogolubsky I.L., Ilgenfritz E.-M., Müller-Preussker M., Sternbeck A., “Lattice gluodynamics computation of Landau-gauge Green's functions in the deep infrared”, Phys. Lett. B, 676 (2009), 69, arXiv: 0901.0736 | DOI
[44] Bornyakov V.G., Mitrjushkin V.K., Müller-Preussker M., “Infrared behavior and Gribov ambiguity in $SU(2)$ lattice gauge theory”, Phys. Rev. D, 79 (2009), 074504, arXiv: 0812.2761 | DOI
[45] Bornyakov V.G., Mitrjushkin V.K., Müller-Preussker M., “$SU(2)$ lattice gluon propagator: Continuum limit, finite-volume effects, and infrared mass scale $m_\textup {IR}$”, Phys. Rev. D, 81 (2010), 054503, arXiv: 0912.4475 | DOI
[46] Sternbeck A., von Smekal L., Infrared exponents and the strong-coupling limit in lattice Landau gauge, E-print, 2008, arXiv: 0811.4300
[47] Sternbeck A., von Smekal L., The strong-coupling limit of lattice Landau gauge, E-print, 2008, arXiv: 0812.3268
[48] Voigt A., Ilgenfritz E.-M., Müller-Preussker M., Sternbeck A., “Effective Coulomb potential in $SU(3)$ lattice Yang–Mills theory”, Phys. Rev. D, 78 (2008), 014501, arXiv: 0803.2307 | DOI
[49] Bogolubsky I.L., Bornyakov V.G., Burgio G., Ilgenfritz E.-M., Müller-Preussker M., Mitrjushkin V.K., “Improved Landau gauge fixing and the suppression of finite-volume effects of the lattice gluon propagator”, Phys. Rev. D, 77 (2008), 014504, arXiv: 0707.3611 | DOI
[50] Parrinello C., Jona-Lasinio G., “A modified Faddeev–Popov formula and the Gribov ambiguity”, Phys. Lett. B, 251 (1990), 175 | DOI | MR
[51] Zwanziger D., “Quantization of gauge fields, classical gauge invariance and gluon confinement”, Nucl. Phys. B, 345 (1990), 461 | DOI | MR
[52] Nakamura A., Plewnia M., “Gauge fixing ambiguity and photon propagators in compact $U(1)$ lattice gauge theory”, Phys. Lett. B, 255 (1991), 274 | DOI
[53] Bornyakov V.G., Mitrjushkin V.K., Müller-Preussker M., Pahl F., “Dirac sheets and gauge fixing in $U(1)$ lattice gauge theory”, Phys. Lett. B, 317 (1993), 596, arXiv: hep-lat/9307010 | DOI
[54] Mitrjushkin V.K., “Classical solutions in lattice gauge theories”, Phys. Lett. B, 389 (1996), 713, arXiv: hep-lat/9607069 | DOI | MR
[55] Bogolubsky I.L., Mitrjushkin V.K., Müller-Preussker M., Peter P., “Lorentz gauge and Gribov ambiguity in the compact lattice $U(1)$ theory”, Phys. Lett. B, 458 (1999), 102, arXiv: hep-lat/9904001 | DOI
[56] Bogolubsky I.L., Mitrjushkin V.K., Müller-Preussker M., Peter P., Zverev N.V., “Fermionic correlators and zero-momentum modes in quenched lattice QED”, Phys. Lett. B, 476 (2000), 448, arXiv: hep-lat/9912017 | DOI
[57] Bogolubsky I.L., Ilgenfritz E.-M., Müller-Preussker M., Sternbeck A., “The Landau gauge gluon propagator in 4D $SU(2)$ lattice gauge theory revisited: Gribov copies and scaling properties”, Proc. Sci. 2009. LAT2009, 237, arXiv: 0912.2249
[58] Taylor J.C., “Ward identities and charge renormalization of the Yang–Mills field”, Nucl. Phys. B, 33 (1971), 436 | DOI | MR
[59] Cucchieri A., Mendes T., Mihara A., “Numerical study of the ghost–gluon vertex in Landau gauge”, J. High Energy Phys., 2004, no. 12, 012, arXiv: hep-lat/0408034 | DOI
[60] Sternbeck A., Ilgenfritz E.-M., Müller-Preussker M., Schiller A., “Studying the infrared region in Landau gauge QCD”, Proc. Sci. 2005. LAT2005, 333, arXiv: hep-lat/0509090 | MR
[61] von Smekal L., Maltman K., Sternbeck A., “The strong coupling and its running to four loops in a minimal MOM scheme”, Phys. Lett. B, 681 (2009), 336, arXiv: 0903.1696 | DOI
[62] Sternbeck A., Ilgenfritz E.-M., Maltman K., Müller-Preussker M., von Smekal L., Williams A.G., “QCD lambda parameter from Landau-gauge gluon and ghost correlations”, Proc. Sci. 2009. LAT2009, 210, arXiv: 1003.1585
[63] Bogolubsky I.L., Burgio G., Müller-Preussker M., Mitrjushkin V.K., “Landau gauge ghost and gluon propagators in $SU(2)$ lattice gauge theory: Gribov ambiguity reexamined”, Phys. Rev. D, 74 (2006), 034503, arXiv: hep-lat/0511056 | DOI
[64] Maas A., “Constructing non-perturbative gauges using correlation functions”, Phys. Lett. B, 689 (2010), 107, arXiv: 0907.5185 | DOI
[65] Maas A., Pawlowski J.M., Spielmann D., Sternbeck A., von Smekal L., Strong-coupling study of the Gribov ambiguity in lattice Landau gauge, E-print, 2010, arXiv: 0912.4203
[66] Slavnov A.A., Lorentz invariant quantization of the Yang–Mills theory free of Gribov ambiguity, E-print, 2009, arXiv: 0902.1847 | MR
[67] Quadri A., Slavnov A.A., Renormalization of the Yang–Mills theory in the ambiguity-free gauge, E-print, 2010, arXiv: 1002.2490 | MR