Generalized Wigner--In\"on\"u contractions and Maxwell (super)algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 194-201

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a class of generalized Wigner–Inönü contractions for the semidirect product of two particularly related semisimple Lie (super)algebras. A special class of such contractions provides the $D=4$ Maxwell algebra and the recently introduced simple $D=4$ Maxwell superalgebra. Further we present two types of $D=4$ $N$-extended Maxwell superalgebras, the nonstandard one for any $N$ with $\frac12N(N-1)$ central charges and the standard one, for even $N=2k$, with $k(2k-1)$ internal symmetry generators.
@article{TM_2011_272_a16,
     author = {Jerzy Lukierski},
     title = {Generalized {Wigner--In\"on\"u} contractions and {Maxwell} (super)algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--201},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a16/}
}
TY  - JOUR
AU  - Jerzy Lukierski
TI  - Generalized Wigner--In\"on\"u contractions and Maxwell (super)algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 194
EP  - 201
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a16/
LA  - en
ID  - TM_2011_272_a16
ER  - 
%0 Journal Article
%A Jerzy Lukierski
%T Generalized Wigner--In\"on\"u contractions and Maxwell (super)algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 194-201
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a16/
%G en
%F TM_2011_272_a16
Jerzy Lukierski. Generalized Wigner--In\"on\"u contractions and Maxwell (super)algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 194-201. http://geodesic.mathdoc.fr/item/TM_2011_272_a16/