Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_272_a14, author = {John R. Klauder}, title = {An affinity for affine quantum gravity}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {180--187}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a14/} }
John R. Klauder. An affinity for affine quantum gravity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 180-187. http://geodesic.mathdoc.fr/item/TM_2011_272_a14/
[1] String theory, Wikipedia: The Free Encyclopedia. Jan. 5, 2011 http://en.wikipedia.org/w/index.php?title=String\textunderscore theory&oldid=406091132
[2] Polchinski J., String theory, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1998
[3] Loop quantum gravity, Wikipedia: The Free Encyclopedia. Jan. 9, 2011 http://en.wikipedia.org/w/index.php?title=Loop\textunderscore quantum\textunderscore gravity&oldid=406894581
[4] Rovelli C., Quantum gravity, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl
[5] Klauder J.R., “Noncanonical quantization of gravity. I: Foundations of affine quantum gravity”, J. Math. Phys., 40 (1999), 5860, arXiv: gr-qc/9906013 | DOI | MR | Zbl
[6] Klauder J.R., “Noncanonical quantization of gravity. II: Constraints and the physical Hilbert space”, J. Math. Phys., 42 (2001), 4440, arXiv: gr-qc/0102041 | DOI | MR | Zbl
[7] Klauder J.R., “Ultralocal fields and their relevance for reparametrization-invariant quantum field theory”, J. Phys. A: Math. and Gen., 34 (2001), 3277, arXiv: quant-ph/0012076 | DOI | MR | Zbl
[8] Aronszajn N., “La théorie des noyaux reproduisants et ses applications. Première partie”, Proc. Cambridge Philos. Soc., 39 (1943), 133 | DOI | MR
[9] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68 (1950), 337 | DOI | MR | Zbl
[10] Meschkowski H., Hilbertsche Räume mit Kernfunktion, Springer, Berlin, 1962 | MR | Zbl
[11] Klauder J.R., “Quantization = Geometry + Probability”, Probabilistic methods in quantum field theory and quantum gravity, eds. P.H. Damgaard, H. Hüffel, A. Rosenblum, Plenum Press, New York, 1990, 73–85 | DOI | MR
[12] Watson G., Klauder J.R., “Metric and curvature in gravitational phase space”, Class. and Quantum Grav., 19 (2002), 3617 | DOI | MR | Zbl
[13] Klauder J.R., “Universal procedure for enforcing quantum constraints”, Nucl. Phys. B, 547 (1999), 397, arXiv: hep-th/9901010 | DOI | MR | Zbl
[14] Klauder J.R., “Coherent state quantization of constraint systems”, Ann. Phys., 254 (1997), 419, arXiv: quant-ph/9604033 | DOI | MR | Zbl
[15] Klauder J.R., “Quantization of constrained systems”, Methods of quantization, Lect. Notes Phys., 572, Springer, Berlin, 2001, 143–182, arXiv: hep-th/0003297 | DOI | MR | Zbl
[16] Little J.S., Klauder J.R., “Elementary model of constraint quantization with an anomaly”, Phys. Rev. D, 71 (2005), 085014 | DOI | MR
[17] Klauder J.R., “Field structure through model studies: Aspects of nonrenormalizable theories”, Acta phys. Austriaca. Suppl., 11 (1973), 341
[18] Klauder J.R., “On the meaning of a non-renormalizable theory of gravitation”, Gen. Relativ. and Gravit., 6 (1975), 13 | DOI | MR
[19] Klauder J.R., “Continuous and discontinuous perturbations”, Science, 199 (1978), 735 | DOI
[20] Klauder J.R., Beyond conventional quantization, Cambridge Univ. Press, Cambridge, 2000, 2005 | MR | Zbl
[21] Ladyženskaja O.A., Solonnikov V.A., Ural'ceva N.N., Linear and quasi-linear equations of parabolic type, Transl. Math. Monogr., 23, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[22] Klauder J.R., “Taming nonrenormalizability”, J. Phys. A.: Math. and Theor., 42 (2009), 335208, arXiv: 0811.3386 | DOI | MR | Zbl
[23] Klauder J.R., “Rethinking renormalization”, The legacy of Alladi Ramakrishnan in the mathematical sciences, eds. K. Alladi, J.R. Klauder, C.R. Rao, Springer, New York, 2010, 503–528, arXiv: 0904.2869 | DOI | MR
[24] Fernández R., Fröhlich J., Sokal A.D., Random walks, critical phenomena, and triviality in quantum field theory, Springer, Berlin, 1992 | MR
[25] Klauder J.R., “Weak correspondence principle”, J. Math. Phys., 8 (1967), 2392 | DOI