Critical phenomena in deep inelastic scattering
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 162-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Saturation in deep inelastic scattering (DIS) and deeply virtual Compton scattering is associated with a phase transition between the partonic gas, typical of moderate $x$ and $Q^2$, and a partonic fluid (liquid), appearing at increasing $Q^2$ and decreasing Bjorken $x$. In the statistical interpretation of DIS, the large-$x$, $(1-x)^n$ factor in the structure functions is associated with a statistical distribution (perfect gas), while the low-$x$, Regge behaved factor $x^{b(Q^2)}$ introduces deviation from the perfect gas and ultimately leads to a gas-liquid phase transition.
@article{TM_2011_272_a12,
     author = {L. Jenkovszky and S. Troshin and N. Tyurin},
     title = {Critical phenomena in deep inelastic scattering},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {162--169},
     publisher = {mathdoc},
     volume = {272},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a12/}
}
TY  - JOUR
AU  - L. Jenkovszky
AU  - S. Troshin
AU  - N. Tyurin
TI  - Critical phenomena in deep inelastic scattering
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2011
SP  - 162
EP  - 169
VL  - 272
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2011_272_a12/
LA  - en
ID  - TM_2011_272_a12
ER  - 
%0 Journal Article
%A L. Jenkovszky
%A S. Troshin
%A N. Tyurin
%T Critical phenomena in deep inelastic scattering
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2011
%P 162-169
%V 272
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2011_272_a12/
%G en
%F TM_2011_272_a12
L. Jenkovszky; S. Troshin; N. Tyurin. Critical phenomena in deep inelastic scattering. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 162-169. http://geodesic.mathdoc.fr/item/TM_2011_272_a12/

[1] Jenkovszky L.L., Troshin S.M., Tyurin N.E., “Saturation and critical phenomena in DIS”, Moving forward into the LHC era: Proc. 13th Intern. Conf. on Elastic and Diffractive Scattering (Blois Workshop) (CERN, Geneva, 2009), DESY, Hamburg, 2010, 415–421; arXiv: 1002.3527 [hep-ph]

[2] Bulavin L.A., Jenkovszky L.L., Troshin S.M., Tyurin N.E., “Critical phenomena in high-energy lepton- and hadron-induced reactions”, Phys. Part. and Nucl., 41:6 (2010), 924–927 | DOI

[3] Yoshida R., “What HERA can tell us about saturation”, Proc. 38th Intern. Symp. on Multiparticle Dynamics (ISMD08), DESY, Hamburg, 2009, 177–180

[4] Bertini M., Giffon M., Jenkovszky L.L., Paccanoni F., Predazzi E., “The pomeron in elastic and deep inelastic scattering”, Riv. Nuovo Cimento., 19:1 (1996), 1–37 | DOI | MR

[5] Desgrolard P., Jenkovszky L., Paccanoni F., “Interpolating between soft and hard dynamics in deep inelastic scattering”, Eur. Phys. J. C, 7 (1999), 263–270 | DOI

[6] Jenkovszky L.L., Struminsky B.V., Scaling violation and rise of the cross sections, Preprint ITP-77-37E, Kiev, 1977

[7] Troshin S.M., Tyurin N.E., “Impact parameter model for GPD”, Mod. Phys. Lett. A, 23 (2008), 3141–3148 ; arXiv: 0803.1917 [hep-ph] | DOI

[8] Jenkovszky L.L., “Dual analytic model of generalized parton distributions”, Yad. fiz., 71 (2008), 372–384

[9] Staśto A.M., Golec-Biernat K., Kwieciński J., “Geometric scaling for the total $\gamma ^*p$ cross section in the low $x$ region”, Phys. Rev. Lett., 86 (2001), 596–599 | DOI

[10] Golec-Biernat K., Saturation and geometric scaling in DIS at small $x$, E-print, 2001, arXiv: hep-ph/0109010

[11] Cleymans J., Lykasov G.I., Sissakian A.N., Sorin A.S., Teryaev O.V., Duality of thermal and dynamical descriptions in particle interactions, E-print, 2010, arXiv: 1004.2770 [hep-ph]

[12] Fermi E., Termodinamica, Boringhieri, Torino, 1958

[13] Landau L.D., Lifshits E.M., Statisticheskaya fizika, Ch. 1, Nauka, M., 1976 | MR

[14] Jaqaman H., Mekjian A.Z., Zamick L., “Nuclear condensation”, Phys. Rev. C, 27 (1983), 2782–2791 | DOI

[15] Bhalerao R.S., Kelkar N.G., Ram B., Model for polarized and unpolarized parton density functions in the nucleon, E-print, 1999, arXiv: hep-ph/9911286

[16] Ezhov S.N., Jenkovszky L.L., Muskheev V., “Excited nucleon as a van der Waals system of parton”, Yad. fiz., 2011 (to appear)