Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2011_272_a11, author = {Marc Henneaux and Axel Kleinschmidt and Gustavo Lucena G\'omez}, title = {Remarks on gauge invariance and first-class constraints}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {152--161}, publisher = {mathdoc}, volume = {272}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TM_2011_272_a11/} }
TY - JOUR AU - Marc Henneaux AU - Axel Kleinschmidt AU - Gustavo Lucena Gómez TI - Remarks on gauge invariance and first-class constraints JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2011 SP - 152 EP - 161 VL - 272 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2011_272_a11/ LA - en ID - TM_2011_272_a11 ER -
%0 Journal Article %A Marc Henneaux %A Axel Kleinschmidt %A Gustavo Lucena Gómez %T Remarks on gauge invariance and first-class constraints %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2011 %P 152-161 %V 272 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2011_272_a11/ %G en %F TM_2011_272_a11
Marc Henneaux; Axel Kleinschmidt; Gustavo Lucena Gómez. Remarks on gauge invariance and first-class constraints. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of modern theoretical and mathematical physics: Gauge theories and superstrings, Tome 272 (2011), pp. 152-161. http://geodesic.mathdoc.fr/item/TM_2011_272_a11/
[1] Dirac P.A.M., “Generalized Hamiltonian dynamics”, Can. J. Math., 2 (1950), 129 | DOI | MR | Zbl
[2] Dirac P.A.M., Lectures on quantum mechanics, Dover Publ., Mineola, NY, 2001
[3] Henneaux M., Teitelboim C., Quantization of gauge systems, Princeton Univ. Press, Princeton, NJ, 1992 | MR | Zbl
[4] Hořava P., “Membranes at quantum criticality”, J. High Energy Phys., 2009, no. 3, 020, arXiv: 0812.4287 [hep-th] | MR | Zbl
[5] Hořava P., “Quantum gravity at a Lifshitz point”, Phys. Rev. D, 79 (2009), 084008, arXiv: 0901.3775 [hep-th] | DOI | MR
[6] Blas D., Pujolàs O., Sibiryakov S., A healthy extension of Hořava gravity, E-print, 2009, arXiv: 0909.3525 [hep-th] | MR
[7] Teitelboim C., “The Hamiltonian structure of space–time”, General relativity and gravitation: One hundred years after the birth of Albert Einstein, v. 1, eds. A. Held, Plenum Press, New York, 1980, 195–225 | MR
[8] Isham C.J., “Some quantum field theory aspects of the superspace quantization of general relativity”, Proc. Roy. Soc. London A, 351 (1976), 209 | DOI | MR
[9] Henneaux M., Geometry of zero signature space–times, Print-79-0606, Princeton, 1979 | Zbl
[10] Henneaux M., Kleinschmidt A., Lucena Gómez G., “A dynamical inconsistency of Hořava gravity”, Phys. Rev. D, 81 (2010), 064002, arXiv: 0912.0399 [hep-th] | DOI | MR
[11] Lü H., Mei J., Pope C.N., “Solutions to Hořava gravity”, Phys. Rev. Lett., 103 (2009), 091301, arXiv: 0904.1595 [hep-th] | DOI | MR
[12] Kiritsis E., Kofinas G., On Hořava–Lifshitz “black holes”, E-print, 2009, arXiv: 0910.5487 [hep-th] | MR
[13] Kiritsis E., Spherically symmetric solutions in modified Hořava–Lifshitz gravity, E-print, 2009, arXiv: 0911.3164 [hep-th] | MR
[14] Calcagni G., “Cosmology of the Lifshitz universe”, J. High Energy Phys., 2009, no. 9, 112, arXiv: 0904.0829 [hep-th] | DOI | MR
[15] Kiritsis E., Kofinas G., “Hořava–Lifshitz cosmology”, Nucl. Phys. B, 821 (2009), 467, arXiv: 0904.1334 [hep-th] | DOI | MR | Zbl
[16] Bakas I., Bourliot F., Lüst D., Petropoulos M., Mixmaster universe in Hořava–Lifshitz gravity, E-print, 2009, arXiv: 0911.2665 [hep-th] | MR
[17] Blas D., Pujolàs O., Sibiryakov S., “On the extra mode and inconsistency of Hořava gravity”, J. High Energy Phys., 2009, no. 10, 029, arXiv: 0906.3046 | DOI | MR
[18] Giulini D., Kiefer C., “Wheeler–DeWitt metric and the attractivity of gravity”, Phys. Lett. A, 193 (1994), 21, arXiv: gr-qc/9405040 | DOI
[19] Barbour J., Foster B.Z., Ó Murchadha N., “Relativity without relativity”, Class. and Quantum Grav., 19 (2002), 3217, arXiv: gr-qc/0012089 | DOI | MR | Zbl
[20] Kocharyan A.A., “Is nonrelativistic gravity possible?”, Phys. Rev. D, 80 (2009), 024026, arXiv: 0905.4204 [hep-th] | DOI
[21] Charmousis C., Niz G., Padilla A., Saffin P.M., “Strong coupling in Hořava gravity”, J. High Energy Phys., 2009, no. 8, 070, arXiv: 0905.2579 [hep-th] | DOI | MR
[22] Li M., Pang Y., “A trouble with Hořava–Lifshitz gravity”, J. High Energy Phys., 2009, no. 8, 015, arXiv: 0905.2751 [hep-th] | MR
[23] Floreanini R., Jackiw R., “Self-dual fields as charge-density solitons”, Phys. Rev. Lett., 59 (1987), 1873 | DOI
[24] Henneaux M., Teitelboim C., “Dynamics of chiral (self-dual) $p$-forms”, Phys. Lett. B., 206 (1988), 650 | DOI
[25] Henneaux M., Teitelboim C., “Consistent quantum mechanics of chiral $p$-forms”, Quantum mechanics of fundamental systems, Proc. Conf., Santiago, 1987, v. 2, Plenum Press, New York, 1989, 79–112 | DOI | MR
[26] Farkas S., Martinec E.J., Gravity from the extension of spatial diffeomorphisms, E-print, 2010, arXiv: 1002.4449 [hep-th] | MR
[27] Bañados M., Garay L.J., Henneaux M., “Existence of local degrees of freedom for higher dimensional pure Chern–Simons theories”, Phys. Rev. D, 53 (1996), R593–R596, arXiv: hep-th/9506187 | DOI | MR
[28] Bañados M., Garay L.J., Henneaux M., “The dynamical structure of higher dimensional Chern–Simons theory”, Nucl. Phys. B, 476 (1996), 611, arXiv: hep-th/9605159 | DOI | MR | Zbl
[29] Bañados M., Henneaux M., Iannuzzo C., Viallet C.M., “Gauge symmetries of pure Chern–Simons theories with $p$-form gauge fields”, Class. and Quantum Grav., 14 (1997), 2455, arXiv: gr-qc/9703061 | DOI | MR | Zbl
[30] Bellorin J., Restuccia A., On the consistency of the Hořava theory, E-print, 2010, arXiv: 1004.0055 [hep-th] | MR