On dynamical regularization under random noise
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 134-147

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing a robust dynamic approximation of a time-varying input to a control system from the results of inaccurate observation of the states of the system. In contrast to the earlier studied cases in which the observation errors are assumed to be small in the metric sense, the errors in the present case are allowed to take, generally, large values and are subject to a certain probability distribution. The observation errors occurring at different instants are supposed to be statistically independent. Under the assumption that the expected values of the observation errors are small, we construct a dynamical algorithm for approximating the normal (minimal in the sense of the mean-square norm) input; the algorithm ensures an arbitrarily high level of the mean-square approximation accuracy with an arbitrarily high probability.
@article{TM_2010_271_a9,
     author = {A. V. Kryazhimskii and Yu. S. Osipov},
     title = {On dynamical regularization under random noise},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {134--147},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a9/}
}
TY  - JOUR
AU  - A. V. Kryazhimskii
AU  - Yu. S. Osipov
TI  - On dynamical regularization under random noise
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 134
EP  - 147
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a9/
LA  - ru
ID  - TM_2010_271_a9
ER  - 
%0 Journal Article
%A A. V. Kryazhimskii
%A Yu. S. Osipov
%T On dynamical regularization under random noise
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 134-147
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a9/
%G ru
%F TM_2010_271_a9
A. V. Kryazhimskii; Yu. S. Osipov. On dynamical regularization under random noise. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 134-147. http://geodesic.mathdoc.fr/item/TM_2010_271_a9/