Hamilton--Jacobi inequalities in control problems for impulsive dynamical systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 93-110
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose definitions of strong and weak monotonicity of Lyapunov-type functions for nonlinear impulsive dynamical systems that admit vector measures as controls and have trajectories of bounded variation. We formulate infinitesimal conditions for the strong and weak monotonicity in the form of systems of proximal Hamilton–Jacobi inequalities. As an application of strongly and weakly monotone Lyapunov-type functions, we consider estimates for integral funnels of impulsive systems as well as necessary and sufficient conditions of global optimality corresponding to the approach of the canonical Hamilton–Jacobi theory.
@article{TM_2010_271_a7,
author = {V. A. Dykhta and O. N. Samsonyuk},
title = {Hamilton--Jacobi inequalities in control problems for impulsive dynamical systems},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {93--110},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a7/}
}
TY - JOUR AU - V. A. Dykhta AU - O. N. Samsonyuk TI - Hamilton--Jacobi inequalities in control problems for impulsive dynamical systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 93 EP - 110 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a7/ LA - ru ID - TM_2010_271_a7 ER -
%0 Journal Article %A V. A. Dykhta %A O. N. Samsonyuk %T Hamilton--Jacobi inequalities in control problems for impulsive dynamical systems %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 93-110 %V 271 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_271_a7/ %G ru %F TM_2010_271_a7
V. A. Dykhta; O. N. Samsonyuk. Hamilton--Jacobi inequalities in control problems for impulsive dynamical systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 93-110. http://geodesic.mathdoc.fr/item/TM_2010_271_a7/