Property of almost independent images for ergodic transformations without partial rigidity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 29-39
Voir la notice de l'article provenant de la source Math-Net.Ru
S. V. Tikhonov, in his paper of 2007 devoted to a new metric on the class of mixing transformations, faced the following natural question when studying the properties of such transformations: Does there exist a set $A$ with $\mu(A)=\frac12$ such that the inequality $|\mu(A\cap T^iA)-\mu(A)^2|\varepsilon$ holds for all $i>0$? V. V. Ryzhikov (2009) obtained the following criterion: For an ergodic transformation $T$, a set $A$ of given measure such that $A$ and its images under $T$ are $\varepsilon$-independent exists if and only if $T$ does not possess the property of partial rigidity. The aim of the present study is to generalize this proposition to the case of multiple $\varepsilon$-independence of images.
@article{TM_2010_271_a3,
author = {A. I. Bashtanov},
title = {Property of almost independent images for ergodic transformations without partial rigidity},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {29--39},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a3/}
}
TY - JOUR AU - A. I. Bashtanov TI - Property of almost independent images for ergodic transformations without partial rigidity JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 29 EP - 39 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a3/ LA - ru ID - TM_2010_271_a3 ER -
A. I. Bashtanov. Property of almost independent images for ergodic transformations without partial rigidity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 29-39. http://geodesic.mathdoc.fr/item/TM_2010_271_a3/