Property of almost independent images for ergodic transformations without partial rigidity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 29-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

S. V. Tikhonov, in his paper of 2007 devoted to a new metric on the class of mixing transformations, faced the following natural question when studying the properties of such transformations: Does there exist a set $A$ with $\mu(A)=\frac12$ such that the inequality $|\mu(A\cap T^iA)-\mu(A)^2|\varepsilon$ holds for all $i>0$? V. V. Ryzhikov (2009) obtained the following criterion: For an ergodic transformation $T$, a set $A$ of given measure such that $A$ and its images under $T$ are $\varepsilon$-independent exists if and only if $T$ does not possess the property of partial rigidity. The aim of the present study is to generalize this proposition to the case of multiple $\varepsilon$-independence of images.
@article{TM_2010_271_a3,
     author = {A. I. Bashtanov},
     title = {Property of almost independent images for ergodic transformations without partial rigidity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {29--39},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a3/}
}
TY  - JOUR
AU  - A. I. Bashtanov
TI  - Property of almost independent images for ergodic transformations without partial rigidity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 29
EP  - 39
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a3/
LA  - ru
ID  - TM_2010_271_a3
ER  - 
%0 Journal Article
%A A. I. Bashtanov
%T Property of almost independent images for ergodic transformations without partial rigidity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 29-39
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a3/
%G ru
%F TM_2010_271_a3
A. I. Bashtanov. Property of almost independent images for ergodic transformations without partial rigidity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 29-39. http://geodesic.mathdoc.fr/item/TM_2010_271_a3/

[1] Tikhonov S.V., “Polnaya metrika na mnozhestve peremeshivayuschikh preobrazovanii”, UMN, 62:1 (2007), 209–210 | DOI | MR | Zbl

[2] Ryzhikov V.V., “Poparnaya $\varepsilon $-nezavisimost mnozhestv $T^iA$ dlya peremeshivayuschego preobrazovaniya $T$”, Funkts. analiz i ego pril., 43:2 (2009), 88–91 | DOI | MR | Zbl

[3] Ryzhikov V.V., “Peremeshivanie, rang i minimalnoe samoprisoedinenie deistvii s invariantnoi meroi”, Mat. sb., 183:3 (1992), 133–160 | MR | Zbl

[4] Kalikow S.A., “Twofold mixing implies threefold mixing for rank one transformations”, Ergodic Theory and Dyn. Syst., 4 (1984), 237–259 | DOI | MR | Zbl

[5] Borovkov A.A., Teoriya veroyatnostei, 2-e izd., Nauka, 1986 | MR | Zbl

[6] Kornfeld I.P., Sinai Ya.G., Fomin S.V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[7] Sinai Ya.G., “O slabom izomorfizme preobrazovanii s invariantnoi meroi”, Mat. sb., 63:1 (1964), 23–42 | MR

[8] Katok A.B., “Entropiya i approksimatsii dinamicheskikh sistem periodicheskimi preobrazovaniyami”, Funkts. analiz i ego pril., 1:1 (1967), 75–85 | MR | Zbl

[9] Khalmosh P.R., Lektsii po ergodicheskoi teorii, Izd-vo inostr. lit., M., 1959

[10] Khinchin A.Ya., “Ob osnovnykh teoremakh teorii informatsii”, UMN, 11:1 (1956), 17–75 | Zbl

[11] Alon N., Spenser Dzh., Veroyatnostnyi metod, Binom. Laboratoriya znanii, M., 2007

[12] Lindenstrauss E., “Pointwise theorems for amenable groups”, Invent. math., 146:2 (2001), 259–295 | DOI | MR | Zbl

[13] Pitskel B.S., Stepin A.M., “O svoistve ravnoraspredelennosti entropii kommutativnykh grupp metricheskikh avtomorfizmov”, DAN SSSR, 198:5 (1971), 1021–1024 | MR

[14] Ornstein D.S., “On the root problem in ergodic theory”, Proc. 6th Berkeley Symp. Math. Statist. and Probab., 1970, Univ. Calif. Press, Berkeley, 1972, 347–356 | MR | Zbl

[15] Prikhodko A.A., “Stokhasticheskie konstruktsii potokov ranga $1$”, Mat. sb., 192:12 (2001), 61–92 | DOI | MR | Zbl

[16] El Abdalaoui, El Houcein., “A new class of rank-one transformations with singular spectrum”, Ergodic Theory and Dyn. Syst., 27:5 (2007), 1541–1555 | DOI | MR | Zbl