Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 241-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a relationship between a path integral representation of the heat kernel and the construction of a fundamental solution to a diffusion-type equation by the parametrix method; this relationship is used to find the coefficients of a short-time asymptotic expansion of the heat kernel. We extend the approach proposed to the case of diffusion with drift and obtain two-sided estimates for the regularized trace of the corresponding evolution semigroup.
@article{TM_2010_271_a16,
     author = {S. A. Stepin},
     title = {Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a16/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 241
EP  - 258
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a16/
LA  - ru
ID  - TM_2010_271_a16
ER  - 
%0 Journal Article
%A S. A. Stepin
%T Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 241-258
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a16/
%G ru
%F TM_2010_271_a16
S. A. Stepin. Parametrix, heat kernel asymptotics, and regularized trace of the diffusion semigroup. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 241-258. http://geodesic.mathdoc.fr/item/TM_2010_271_a16/

[1] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[2] Kats M., Veroyatnost i smezhnye voprosy v fizike, Mir, M., 1965 | Zbl

[3] Tsikon Kh., Frëze R., Kirsh V., Saimon B., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[4] Arsenev A.A., “Asimptotika spektralnoi funktsii uravneniya Shrëdingera”, ZhVMiMF, 7:6 (1967), 1298–1319 | MR | Zbl

[5] Buslaev V.S., “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shrëdingera v trekhmernom prostranstve”, Problemy mat. fiziki, 1 (1966), 82–101 | MR | Zbl

[6] Kannai Y., “Off diagonal short time asymptotics for fundamental solutions of diffusion equations”, Commun. Part. Diff. Equat., 2:8 (1977), 781–830 | DOI | MR

[7] Yafaev D.R., “Operator Shrëdingera: opredeliteli vozmuscheniya, funktsiya spektralnogo sdviga, tozhdestva sledov i prochee”, Funkts. analiz i ego pril., 41:3 (2007), 60–83 | DOI | MR | Zbl

[8] Colin de Verdière Y., “Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb R^3$”, Ann. Sci. École Norm. Supér. Sér. 4, 14:1 (1981), 27–39 | MR | Zbl

[9] Hitrik M., Polterovich I., “Regularized traces and Taylor expansions for the heat semigroup”, J. London Math. Soc. Ser. 2, 68:2 (2003), 402–418 | DOI | MR | Zbl

[10] Sadovnichii V.A., Podolskii V.E., “Sledy operatorov”, UMN, 61:5 (2006), 89–156 | DOI | MR | Zbl

[11] Stepin S.A., “Parametriks, asimptotika yadra i regulyarizovannyi sled diffuzionnoi polugruppy”, DAN, 420:4 (2008), 459–462 | MR | Zbl

[12] Birman M.Sh., Slousch V.A., “Dvustoronnie otsenki dlya sleda raznosti pary polugrupp”, Funkts. analiz i ego pril., 43:3 (2009), 26–32 | DOI | MR | Zbl

[13] Simon B., Functional integration and quantum physics, Acad. Press, New York, 1979 | MR

[14] Molchanov S.A., “Diffuzionnye protsessy i rimanova geometriya”, UMN, 30:1 (1975), 3–59 | MR | Zbl

[15] Melrose R.B., Geometric scattering theory, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[16] Sá Barreto A., Zworski M., “Existence of resonances in potential scattering”, Commun. Pure and Appl. Math., 49 (1996), 1271–1280 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[17] Lieb E., “Bounds on the eigenvalues of the Laplace and Schrödinger operators”, Bull. Amer. Math. Soc., 82 (1976), 751–753 | DOI | MR | Zbl