Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_271_a14, author = {A. Yu. Savin and B. Yu. Sternin}, title = {Noncommutative elliptic theory. {Examples}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {204--223}, publisher = {mathdoc}, volume = {271}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a14/} }
A. Yu. Savin; B. Yu. Sternin. Noncommutative elliptic theory. Examples. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 204-223. http://geodesic.mathdoc.fr/item/TM_2010_271_a14/
[1] Connes A., “$C^*$ algèbres et géométrie différentielle”, C. r. Acad. sci. Paris A, 290:13 (1980), 599–604 | MR | Zbl
[2] Connes A., Noncommutative geometry, Acad. Press, San Diego (CA), 1994 | MR | Zbl
[3] Connes A., Landi G., “Noncommutative manifolds, the instanton algebra and isospectral deformations”, Commun. Math. Phys., 221:1 (2001), 141–159 | DOI | MR | Zbl
[4] Landi G., van Suijlekom W., “Principal fibrations from noncommutative spheres”, Commun. Math. Phys., 260:1 (2005), 203–225 | DOI | MR | Zbl
[5] Connes A., Dubois-Violette M., “Noncommutative finite-dimensional manifolds. I: Spherical manifolds and related examples”, Commun. Math. Phys., 230:3 (2002), 539–579 | DOI | MR | Zbl
[6] Antonevich A.B., Lebedev A.V., “Funktsionalnye i funktsionalno-operatornye uravneniya. $C^*$-algebraicheskii podkhod”, Tr. S.-Peterb. mat. o-va, 6 (1998), 34–140 | MR
[7] Antonevich A.B., “Kraevye zadachi s silnoi nelokalnostyu dlya ellipticheskikh uravnenii”, Izv. AN SSSR. Ser. mat., 53:1 (1989), 3–24 | MR | Zbl
[8] Nazaikinskii V.E., Savin A.Yu., Sternin B.Yu., Elliptic theory and noncommutative geometry: Nonlocal elliptic operators, Oper. Theory: Adv. and Appl., 183, Birkhäuser, Basel, 2008 | MR | Zbl
[9] Nazaikinskii V.E., Savin A.Yu., Sternin B.Yu., “Ob indekse nelokalnykh ellipticheskikh operatorov”, DAN, 420:5 (2008), 592–597 | MR | Zbl
[10] Schweitzer L.B., “Spectral invariance of dense subalgebras of operator algebras”, Intern. J. Math., 4:2 (1993), 289–317 | DOI | MR | Zbl
[11] Kohn J.J., Nirenberg L., “An algebra of pseudo-differential operators”, Commun. Pure and Appl. Math., 18 (1965), 269–305 | DOI | MR | Zbl
[12] Conner P.E., Floyd E.E., Differentiable periodic maps, Acad. Press, New York, 1964
[13] Slominska J., “On the equivariant Chern homomorphism”, Bull. Acad. Pol. Sci. Sér. Sci. Math., Astron. et Phys., 24 (1976), 909–913 | MR | Zbl
[14] Baum P., Connes A., “Chern character for discrete groups”, A fête of topology, Acad. Press, Boston (MA), 1988, 163–232 | MR
[15] Atiyah M.F., Singer I.M., “The index of elliptic operators. III”, Ann. Math. Ser. 2, 87 (1968), 546–604 | DOI | MR | Zbl
[16] Atiyah M.F., Segal G.B., “The index of elliptic operators. II”, Ann. Math. Ser. 2, 87 (1968), 531–545 | DOI | MR | Zbl
[17] Ji R., “Trace invariant and cyclic cohomology of twisted group $C^*$-algebras”, J. Funct. Anal., 130:2 (1995), 283–292 | DOI | MR | Zbl
[18] Baaj S., “Calcul pseudo-différentiel et produits croisés de $C^*$-algèbres. I”, C. r. Acad. sci. Paris. Sér. 1, 307:11 (1988), 581–586 | MR | Zbl
[19] Baaj S., “Calcul pseudo-différentiel et produits croisés de $C^*$-algèbres. II”, C. r. Acad. sci. Paris. Sér. 1, 307:12 (1988), 663–666 | MR | Zbl
[20] Rosenberg J., “Noncommutative variations on Laplace's equation”, Anal. PDE, 1:1 (2008), 95–114 | DOI | MR | Zbl
[21] Rieffel M.A., “$C^*$-algebras associated with irrational rotations”, Pacif. J. Math., 93:2 (1981), 415–429 | DOI | MR | Zbl