Linear problem of tracking a~given motion under an integral constraint on control
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 181-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of optimally tracking a given vector function by means of a generalized projection of the trajectory of a linear controlled object with an integral constraint on the control. The deviation from a given motion is measured in the metric of the space $C^m[0,T]$ of continuous vector functions of appropriate dimension $m$. We describe a constructive method for solving this optimization problem with a given accuracy.
@article{TM_2010_271_a12,
     author = {M. S. Nikol'skii},
     title = {Linear problem of tracking a~given motion under an integral constraint on control},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--186},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a12/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - Linear problem of tracking a~given motion under an integral constraint on control
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 181
EP  - 186
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a12/
LA  - ru
ID  - TM_2010_271_a12
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T Linear problem of tracking a~given motion under an integral constraint on control
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 181-186
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a12/
%G ru
%F TM_2010_271_a12
M. S. Nikol'skii. Linear problem of tracking a~given motion under an integral constraint on control. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 181-186. http://geodesic.mathdoc.fr/item/TM_2010_271_a12/

[1] Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mischenko E.F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[2] Krasovskii N.N., Teoriya upravleniya dvizheniem: Lineinye sistemy, Nauka, M., 1968 | MR

[3] Li E.B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR

[4] Blagodatskikh V.I., Vvedenie v optimalnoe upravlenie: Lineinaya teoriya, Vyssh. shk., M., 2001

[5] Vasilev F.P., Metody optimizatsii, Faktorial, M., 2002

[6] Porter U., Sovremennye osnovaniya obschei teorii sistem, Nauka, M., 1971 | MR

[7] Egorov A.I., Osnovy teorii upravleniya, Fizmatlit, M., 2004 | MR | Zbl

[8] Barbashin E.A., Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967 | Zbl

[9] Demyanov V.F., Malozemov V.N., Vvedenie v minimaks, Nauka, M., 1972 | MR

[10] Fedorov V.V., Chislennye metody maksimina, Nauka, M., 1979 | MR