Linear problem of tracking a~given motion under an integral constraint on control
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 181-186
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of optimally tracking a given vector function by means of a generalized projection of the trajectory of a linear controlled object with an integral constraint on the control. The deviation from a given motion is measured in the metric of the space $C^m[0,T]$ of continuous vector functions of appropriate dimension $m$. We describe a constructive method for solving this optimization problem with a given accuracy.
@article{TM_2010_271_a12,
author = {M. S. Nikol'skii},
title = {Linear problem of tracking a~given motion under an integral constraint on control},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {181--186},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a12/}
}
TY - JOUR AU - M. S. Nikol'skii TI - Linear problem of tracking a~given motion under an integral constraint on control JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 181 EP - 186 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a12/ LA - ru ID - TM_2010_271_a12 ER -
M. S. Nikol'skii. Linear problem of tracking a~given motion under an integral constraint on control. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 181-186. http://geodesic.mathdoc.fr/item/TM_2010_271_a12/