Optimal Gaussian approximation in the fluctuating field theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the problem of calculating the partition function given by the functional integral over an external field that fluctuates in space and in “time” $\tau\in[0,1/T]$ ($T$ is temperature). A method is presented for calculating such integrals with the help of the Gaussian approximation that takes into account dynamics and non-locality of the fluctuations. The method is based on the free energy minimum principle.
@article{TM_2010_271_a11,
     author = {N. B. Melnikov and B. I. Reser},
     title = {Optimal {Gaussian} approximation in the fluctuating field theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {159--180},
     year = {2010},
     volume = {271},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a11/}
}
TY  - JOUR
AU  - N. B. Melnikov
AU  - B. I. Reser
TI  - Optimal Gaussian approximation in the fluctuating field theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 159
EP  - 180
VL  - 271
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a11/
LA  - ru
ID  - TM_2010_271_a11
ER  - 
%0 Journal Article
%A N. B. Melnikov
%A B. I. Reser
%T Optimal Gaussian approximation in the fluctuating field theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 159-180
%V 271
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a11/
%G ru
%F TM_2010_271_a11
N. B. Melnikov; B. I. Reser. Optimal Gaussian approximation in the fluctuating field theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180. http://geodesic.mathdoc.fr/item/TM_2010_271_a11/

[1] Moriya T., Spinovye fluktuatsii v magnetikakh s kollektivizirovannymi elektronami, Mir, M., 1988

[2] Stratonovich R.L., “Ob odnom metode vychisleniya kvantovykh funktsii raspredeleniya”, DAN SSSR, 115:6 (1957), 1097–1100 | Zbl

[3] Hubbard J., “Calculation of partition functions”, Phys. Rev. Lett., 3:2 (1959), 77–78 | DOI | MR

[4] Feynman R.P., “Slow electrons in a polar crystal”, Phys. Rev., 97 (1955), 660–665 | DOI | Zbl

[5] Hertz J.A., Klenin M.A., “Fluctuations in itinerant-electron paramagnets”, Phys. Rev. B, 10:3 (1974), 1084–1096 | DOI

[6] Hertz J.A., Klenin M.A., “Sloppy spin waves above $T_\mathrm {C}$”, Physica B+C, 91 (1977), 49–55 | DOI

[7] Rezer B.I., Grebennikov V.I., “Raschet plotnosti sostoyanii i namagnichennosti ferromagnitnykh metallov s uchetom lokalnykh spinovykh fluktuatsii”, FMM, 83:2 (1997), 29–40

[8] Rezer B.I., Grebennikov V.I., “Temperaturnaya zavisimost magnitnykh svoistv ferromagnitnykh metallov s uchetom dinamiki i nelokalnosti spinovykh fluktuatsii”, FMM, 85:1 (1998), 30–42

[9] Hubbard J., “The magnetism of iron”, Phys. Rev. B, 19:5 (1979), 2626–2636 | DOI

[10] Grebennikov V.I., Prokopev Yu.I., Sokolov O.B., Turov E.A., “Metod lokalnykh fluktuatsii v teorii magnetizma perekhodnykh metallov”, FMM, 52:4 (1981), 679–694 | Zbl

[11] Reser B.I., Melnikov N.B., Grebennikov V.I., “Beyond Gaussian approximation in the spin-fluctuation theory of metallic ferromagnetism”, J. Phys.: Conf. Ser., 200 (2010), Pap. 012163 | DOI

[12] Melnikov N.B., Reser B.I., Grebennikov V.I., “Spin-fluctuation theory beyond Gaussian approximation”, J. Phys. A: Math. and Theor., 43:19 (2010), Pap. 195004 | DOI

[13] Kakehashi Y., “Dynamical coherent-potential approximation to the magnetism in a correlated electron system”, Phys. Rev. B, 65:18 (2002), Pap. 184420 | DOI

[14] Abrikosov A.A., Gorkov L.P., Dzyaloshinskii I.E., Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR | Zbl

[15] Medvedev B.V., Nachala teoreticheskoi fiziki, 2-e izd., Fizmatlit, M., 2007 | Zbl

[16] Ryder L.H., Quantum Field Theory, 2nd ed., Cambridge Univ. Press, Cambridge, 1996 ; Райдер Л., Квантовая теория поля, Мир, М, 1987 | MR | Zbl

[17] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[18] Tyablikov S.V., Metody kvantovoi teorii magnetizma, 2-e izd., Nauka, M., 1975 | MR

[19] Bogolyubov N.N., Shirkov D.V., Vvedenie v teoriyu kvantovannykh polei, 4-e izd., Nauka, M., 1984 | MR

[20] White R.M., Quantum theory of magnetism: Magnetic properties of materials, 3rd ed., Springer, Berlin, 2007

[21] Bruus H., Flensberg K., Many-body quantum theory in condensed matter physics: An introduction, Oxford Univ. Press, Oxford, 2004

[22] Melnikov N.B., Reser B.I., Grebennikov V.I., “Dynamic spin-fluctuation theory beyond Gaussian approximation with application to iron”, Solid State Phenom., 2010, To appear

[23] Reser B.I., Melnikov N.B., “Problem of temperature dependence in the dynamic spin-fluctuation theory for strong ferromagnets”, J. Phys.: Condens. Matter., 20:28 (2008), Pap. 285205 | DOI | MR