Optimal Gaussian approximation in the fluctuating field theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of calculating the partition function given by the functional integral over an external field that fluctuates in space and in “time” $\tau\in[0,1/T]$ ($T$ is temperature). A method is presented for calculating such integrals with the help of the Gaussian approximation that takes into account dynamics and non-locality of the fluctuations. The method is based on the free energy minimum principle.
@article{TM_2010_271_a11,
     author = {N. B. Melnikov and B. I. Reser},
     title = {Optimal {Gaussian} approximation in the fluctuating field theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {159--180},
     publisher = {mathdoc},
     volume = {271},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a11/}
}
TY  - JOUR
AU  - N. B. Melnikov
AU  - B. I. Reser
TI  - Optimal Gaussian approximation in the fluctuating field theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 159
EP  - 180
VL  - 271
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_271_a11/
LA  - ru
ID  - TM_2010_271_a11
ER  - 
%0 Journal Article
%A N. B. Melnikov
%A B. I. Reser
%T Optimal Gaussian approximation in the fluctuating field theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 159-180
%V 271
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_271_a11/
%G ru
%F TM_2010_271_a11
N. B. Melnikov; B. I. Reser. Optimal Gaussian approximation in the fluctuating field theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180. http://geodesic.mathdoc.fr/item/TM_2010_271_a11/