Optimal Gaussian approximation in the fluctuating field theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of calculating the partition function given by the functional integral over an external field that fluctuates in space and in “time” $\tau\in[0,1/T]$ ($T$ is temperature). A method is presented for calculating such integrals with the help of the Gaussian approximation that takes into account dynamics and non-locality of the fluctuations. The method is based on the free energy minimum principle.
@article{TM_2010_271_a11,
author = {N. B. Melnikov and B. I. Reser},
title = {Optimal {Gaussian} approximation in the fluctuating field theory},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {159--180},
publisher = {mathdoc},
volume = {271},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_271_a11/}
}
TY - JOUR AU - N. B. Melnikov AU - B. I. Reser TI - Optimal Gaussian approximation in the fluctuating field theory JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 159 EP - 180 VL - 271 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_271_a11/ LA - ru ID - TM_2010_271_a11 ER -
N. B. Melnikov; B. I. Reser. Optimal Gaussian approximation in the fluctuating field theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. II, Tome 271 (2010), pp. 159-180. http://geodesic.mathdoc.fr/item/TM_2010_271_a11/