Gradient flows with wildly embedded closures of separatrices
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 138-146

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that for any $n\ge4$ there exists an $n$-dimensional closed manifold $M^n$ on which one can define a Morse–Smale gradient flow $f^t$ with two nodes and two saddles such that the closure of the separatrix of some saddle of $f^t$ is a wildly embedded sphere of codimension 2. We also prove that the closures of separatrices of a flow with three equilibrium points are always embedded in a locally flat way.
@article{TM_2010_270_a8,
     author = {E. V. Zhuzhoma and V. S. Medvedev},
     title = {Gradient flows with wildly embedded closures of separatrices},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {138--146},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a8/}
}
TY  - JOUR
AU  - E. V. Zhuzhoma
AU  - V. S. Medvedev
TI  - Gradient flows with wildly embedded closures of separatrices
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 138
EP  - 146
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a8/
LA  - ru
ID  - TM_2010_270_a8
ER  - 
%0 Journal Article
%A E. V. Zhuzhoma
%A V. S. Medvedev
%T Gradient flows with wildly embedded closures of separatrices
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 138-146
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a8/
%G ru
%F TM_2010_270_a8
E. V. Zhuzhoma; V. S. Medvedev. Gradient flows with wildly embedded closures of separatrices. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 138-146. http://geodesic.mathdoc.fr/item/TM_2010_270_a8/