Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_270_a19, author = {V. L. Chernyshev}, title = {Time-dependent {Schr\"odinger} equation: {Statistics} of the distribution of {Gaussian} packets on a~metric graph}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {249--265}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a19/} }
TY - JOUR AU - V. L. Chernyshev TI - Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 249 EP - 265 VL - 270 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2010_270_a19/ LA - ru ID - TM_2010_270_a19 ER -
%0 Journal Article %A V. L. Chernyshev %T Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 249-265 %V 270 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2010_270_a19/ %G ru %F TM_2010_270_a19
V. L. Chernyshev. Time-dependent Schr\"odinger equation: Statistics of the distribution of Gaussian packets on a~metric graph. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 249-265. http://geodesic.mathdoc.fr/item/TM_2010_270_a19/
[1] Borovskikh A.V., Kopytin A.V., “O rasprostranenii voln po seti”, Sbornik statei aspirantov i studentov matematicheskogo fakulteta VGU, Voronezh. gos. un-t, Voronezh, 1999, 21–25
[2] Gerasimenko N.I., Pavlov B.S., “Zadacha rasseyaniya na nekompaktnykh grafakh”, TMF, 74:3 (1988), 345–359 | MR | Zbl
[3] Glotov N.V., Differentsialnye uravneniya na geometricheskikh grafakh s osobennostyami v koeffitsientakh, Dis. $\dots$ kand. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 2007
[4] Glotov N.V., Pryadiev V.L., “Opisanie reshenii volnovogo uravneniya na konechnom i ogranichennom geometricheskom grafe pri uslovii transmissii tipa “zhidkogo” treniya”, Vestn. Voronezh. gos. un-ta. Fizika. Matematika, 2006, no. 2, 185–193
[5] Zavgorodnii M.G., “Spektralnaya polnota kornevykh funktsii kraevoi zadachi na grafe”, DAN, 335:3 (1994), 281–283 | MR
[6] Kopytin A.V., Pryadiev V.L., “Ob odnom predstavlenii resheniya volnovogo uravneniya na seti”, Sovremennye metody teorii funktsii i smezhnye problemy, Tez. dokl., Voronezh. gos. un-t, Voronezh, 2001, 313
[7] Maslov V.P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[8] Maslov V.P., Fedoryuk M.V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[9] Pokornyi Yu.V., Penkin O.M., Pryadiev V.L., Borovskikh A.V., Lazarev K.P., Shabrov S.A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl
[10] Pokornyi Yu.V., Pryadiev V.L., Borovskikh A.V., “Volnovoe uravnenie na prostranstvennoi seti”, DAN, 388:1 (2003), 16–18 | MR | Zbl
[11] Pryadiev V.L., “Opisanie resheniya nachalno-kraevoi zadachi dlya volnovogo uravneniya na odnomernoi prostranstvennoi seti cherez funktsiyu Grina sootvetstvuyuschei kraevoi zadachi dlya obyknovennogo differentsialnogo uravneniya”, Sovremennaya matematika i ee prilozheniya, 38, 2006, 82–94
[12] Chernyshev V.L., Shafarevich A.I., “Kvaziklassicheskii spektr operatora Shrëdingera na geometricheskom grafe”, Mat. zametki, 82:4 (2007), 606–620 | DOI | MR | Zbl
[13] Ali Mehmeti F., Nonlinear waves in networks, Math. Res., 80, Akad. Verlag, Berlin, 1994 | MR | Zbl
[14] Barvinok A., “Computing the Ehrhart quasi-polynomial of a rational simplex”, Math. Comput., 75 (2006), 1449–1466 | DOI | MR | Zbl
[15] Cattaneo C., Fontana L., “D'Alambert formula on finite one-dimensional networks”, J. Math. Anal. and Appl., 284:2 (2003), 403–424 | DOI | MR | Zbl
[16] Ehrhart E., “Sur les polyèdres rationnels homothétiques à $n$ dimensions”, C. r. Acad. sci. Paris, 254 (1962), 616–618 | MR | Zbl
[17] Exner P., Post O., “Convergence of spectra of graph-like thin manifolds”, J. Geom. and Phys., 54 (2005), 77–115 | DOI | MR | Zbl
[18] Hardy G.H., Littlewood J.E., “Some problems of Diophantine approximation: The lattice-points of a right-angled triangle”, Proc. London Math. Soc. Ser. 2, 20 (1921), 15–36 | DOI
[19] Integer points in polyhedra—geometry, number theory, algebra, optimization, Contemp. Math., 374, Amer. Math. Soc., Providence (RI), 2005
[20] Kuchment P., “Quantum graphs: An introduction and a brief survey”, Analysis on graphs and its applications, Proc. Symp. Pure. Math., 77, Amer. Math. Soc., Providence (RI), 2008, 291–312 | DOI | MR | Zbl
[21] Kurasov P., Nowaczyk M., “Inverse spectral problem for quantum graphs”, J. Phys. A: Math. and Gen., 38 (2005), 4901–4915 | DOI | MR | Zbl
[22] Lumer G., “Connecting of local operators and evolution equations on networks”, Potential theory, Proc. Colloq. (Copenhagen, 1979), Lect. Notes Math., 787, Springer, Berlin, 1980, 219–234 | DOI | MR
[23] Skriganov M.M., “Ergodic theory on $\mathrm {SL}(n)$, Diophantine approximations and anomalies in the lattice point problem”, Invent. math., 132:1 (1998), 1–72 | DOI | MR | Zbl