On the closability and convergence of Dirichlet forms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 220-225

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a measure $\mu$ on $\mathbb R^2$ for which the gradient quadratic form is closable, whereas partial quadratic forms are not closable. We obtain new sufficient conditions for the Mosco convergence of Dirichlet forms. This gives effective conditions for the weak convergence of finite-dimensional distributions of diffusion processes.
@article{TM_2010_270_a15,
     author = {O. V. Pugachev},
     title = {On the closability and convergence of {Dirichlet} forms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {220--225},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a15/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - On the closability and convergence of Dirichlet forms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 220
EP  - 225
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a15/
LA  - ru
ID  - TM_2010_270_a15
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T On the closability and convergence of Dirichlet forms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 220-225
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a15/
%G ru
%F TM_2010_270_a15
O. V. Pugachev. On the closability and convergence of Dirichlet forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 220-225. http://geodesic.mathdoc.fr/item/TM_2010_270_a15/