Spectral properties of a~fourth-order differential operator with integrable coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 188-197.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study spectral properties of differential operators with integrable coefficients and a constant weight function. We analyze the asymptotic behavior of solutions to a differential equation with integrable coefficients for large values of the spectral parameter. To find the asymptotic behavior of solutions, we reduce the differential equation to a Volterra integral equation. We also obtain asymptotic formulas for the eigenvalues of some boundary value problems related to the differential operator under consideration.
@article{TM_2010_270_a13,
     author = {S. I. Mitrokhin},
     title = {Spectral properties of a~fourth-order differential operator with integrable coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {188--197},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a13/}
}
TY  - JOUR
AU  - S. I. Mitrokhin
TI  - Spectral properties of a~fourth-order differential operator with integrable coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 188
EP  - 197
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a13/
LA  - ru
ID  - TM_2010_270_a13
ER  - 
%0 Journal Article
%A S. I. Mitrokhin
%T Spectral properties of a~fourth-order differential operator with integrable coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 188-197
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a13/
%G ru
%F TM_2010_270_a13
S. I. Mitrokhin. Spectral properties of a~fourth-order differential operator with integrable coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 188-197. http://geodesic.mathdoc.fr/item/TM_2010_270_a13/

[1] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Dif. uravneniya, 34:10 (1998), 1423–1426 | MR | Zbl

[2] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN. Ser. mat., 64:4 (2000), 47–108 | DOI | MR | Zbl

[3] Mitrokhin S.I., “O nekotorykh spektralnykh svoistvakh differentsialnykh operatorov vtorogo poryadka s razryvnoi polozhitelnoi vesovoi funktsiei”, DAN, 356:1 (1997), 13–15 | MR | Zbl

[4] Mitrokhin S.I., Ob effekte “rasschepleniya” kratnykh v glavnom sobstvennykh znachenii mnogotochechnykh kraevykh zadach s summiruemymi koeffitsientami, Dep. v VINITI, No627-V2008, Nauch.-issled. tsentr MGU, M., 2008, 20 pp.

[5] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu: Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl

[6] Yurko V.A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007 | Zbl

[7] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[8] Sadovnichii V.A., Teoriya operatorov, Drofa, M., 2001