Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_270_a11, author = {E. A. Kopylova}, title = {On decay of the {Schr\"odinger} resolvent}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {170--176}, publisher = {mathdoc}, volume = {270}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a11/} }
E. A. Kopylova. On decay of the Schr\"odinger resolvent. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 170-176. http://geodesic.mathdoc.fr/item/TM_2010_270_a11/
[1] Agmon S., “Spectral properties of Schrödinger operators and scattering theory”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 2 (1975), 151–218 | MR | Zbl
[2] Jensen A., “Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2(\mathbf R^m)$, $m\ge 5$”, Duke Math. J., 47 (1980), 57–80 | DOI | MR | Zbl
[3] Jensen A., “Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in $L^2(\mathbf R^4)$”, J. Math. Anal. and Appl., 101 (1984), 397–422 | DOI | MR | Zbl
[4] Jensen A., Kato T., “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46 (1979), 583–611 | DOI | MR | Zbl
[5] Murata M., “Asymptotic expansions in time for solutions of Schrödinger-type equations”, J. Funct. Anal., 49 (1982), 10–56 | DOI | MR | Zbl
[6] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Mir, M., 1982
[7] Vainberg B.R., Asimptoticheskie metody v uravneniyakh matematicheskoi fiziki, Izd-vo MGU, M., 1982 | MR | Zbl