Vassiliev invariants and finite-dimensional approximations of the Euler equation in magnetohydrodynamics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 161-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider Hamiltonian systems that correspond to Vassiliev invariants defined by Chen's iterated integrals of logarithmic differential forms. We show that Hamiltonian systems generated by first-order Vassiliev invariants are related to the classical problem of motion of vortices on the plane. Using second-order Vassiliev invariants, we construct perturbations of Hamiltonian systems for the classical problem of $n$ vortices on the plane. We study some dynamical properties of these systems.
@article{TM_2010_270_a10,
     author = {N. A. Kirin},
     title = {Vassiliev invariants and finite-dimensional approximations of the {Euler} equation in magnetohydrodynamics},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {161--169},
     year = {2010},
     volume = {270},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a10/}
}
TY  - JOUR
AU  - N. A. Kirin
TI  - Vassiliev invariants and finite-dimensional approximations of the Euler equation in magnetohydrodynamics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 161
EP  - 169
VL  - 270
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a10/
LA  - ru
ID  - TM_2010_270_a10
ER  - 
%0 Journal Article
%A N. A. Kirin
%T Vassiliev invariants and finite-dimensional approximations of the Euler equation in magnetohydrodynamics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 161-169
%V 270
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a10/
%G ru
%F TM_2010_270_a10
N. A. Kirin. Vassiliev invariants and finite-dimensional approximations of the Euler equation in magnetohydrodynamics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 161-169. http://geodesic.mathdoc.fr/item/TM_2010_270_a10/

[1] Arnold V.I., Khesin B.A., Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007

[2] Borisov A.V., Mamaev I.S., Matematicheskie metody dinamiki vikhrevykh struktur, In-t kompyut. issled., Moskva; Izhevsk, 2005 | MR

[3] Kozlov V.V., Obschaya teoriya vikhrei, Izd-vo Udm. un-ta, Izhevsk, 1998 | MR | Zbl

[4] Khein R.M., Iterirovannye integraly i problema gomotopicheskikh periodov, Nauka, M., 1988 | MR

[5] Berger M.A., “Hamiltonian dynamics generated by Vassiliev invariants”, J. Phys. A: Math. and Gen., 34 (2001), 1363–1374 | DOI | MR | Zbl

[6] Kohno T., “Vassiliev invariants of braids and iterated integrals”, Arrangements — Tokyo 1998, Proc. Workshop on Mathematics Related to Arrangements of Hyperplanes, Adv. Stud. Pure Math., 27, Kinokuniya, Tokyo, 2000, 157–168 | MR | Zbl

[7] Kontsevich M., “Vassiliev's knot invariants”, I.M. Gelfand seminar. Pt. 2: Papers of the Gelfand seminar in functional analysis held at Moscow University 1993, Adv. Sov. Math., 16, no. 2, Amer. Math. Soc., Providence (RI), 1993, 137–150 | MR | Zbl