Quasi corner singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 7-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the classification of germs of functions up to a nonstandard equivalence relation similar to the quasi boundary equivalence and quasi equivalence of projections recently introduced by the second author. In fact, it is more rough than the classification of functions with respect to the group of diffeomorphisms preserving a corner (that is, a union of a pair of transversal hypersurfaces). We present the list of all simple classes and discuss its relation to the singularities of Lagrangian projections with corners. Also, we describe the bifurcation diagrams and caustics of simple quasi corner singularities.
@article{TM_2010_270_a0,
     author = {F. Alharbi and V. Zakalyukin},
     title = {Quasi corner singularities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {7--20},
     publisher = {mathdoc},
     volume = {270},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_270_a0/}
}
TY  - JOUR
AU  - F. Alharbi
AU  - V. Zakalyukin
TI  - Quasi corner singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 7
EP  - 20
VL  - 270
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_270_a0/
LA  - en
ID  - TM_2010_270_a0
ER  - 
%0 Journal Article
%A F. Alharbi
%A V. Zakalyukin
%T Quasi corner singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 7-20
%V 270
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_270_a0/
%G en
%F TM_2010_270_a0
F. Alharbi; V. Zakalyukin. Quasi corner singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and dynamical systems, Tome 270 (2010), pp. 7-20. http://geodesic.mathdoc.fr/item/TM_2010_270_a0/

[1] Arnold V.I., Varchenko A.N., Gusein-Zade S.M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004

[2] Siersma D., “Singularities of functions on boundaries, corners, etc.”, Quart. J. Math. Oxford. Ser. 2, 32:1 (1981), 119–127 | DOI | MR | Zbl

[3] Kryukovskii A.S., Rastyagaev D.V., “Klassifikatsiya unimodalnykh i bimodalnykh uglovykh osobennostei”, Funkts. analiz i ego pril., 26:3 (1992), 77–79 | MR

[4] Zakalyukin V.M., “Quasi singularities”, Geometry and topology of caustics—Caustics'06, Proc. 3rd Banach Center Symp. (Warsaw (Poland), 2006), Banach Center Publ., 82, Pol. Acad. Sci., Inst. Math., Warsaw, 2008, 215–225 | DOI | MR | Zbl

[5] Zakalyukin V.M., “Kvaziproektsii”, Tr. MIAN, 259, 2007, 282–290 | MR | Zbl

[6] Alharbi F., Versal deformation and discriminant of simple quasi singularities, MSc Thesis, Liverpool Univ., Liverpool, 2007

[7] Zakalyukin V.M., “Perestroiki frontov, kaustik, zavisyaschikh ot parametra, versalnost otobrazhenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 22, VINITI, M., 1983, 56–93 | MR

[8] Janeczko S., “Generalized Luneburg canonical varieties and vector fields on quasicaustics”, J. Math. Phys., 31:4 (1990), 997–1009 | DOI | MR | Zbl