Weighted integrability of multiplicative Fourier transforms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 71-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between the weighted integrability of a function and that of its multiplicative Fourier transform (MFT). In particular, for the MFT we prove an analog of R. Boas' conjecture related to the Fourier sine and cosine transforms. In addition, we obtain a sufficient condition under which a contraction of an MFT is also an MFT. For the moduli of continuity $\omega$ satisfying N. K. Bari's condition, we present a criterion for determining whether a function with a nonnegative MFT belongs to the class $H^\omega$.
@article{TM_2010_269_a5,
     author = {S. S. Volosivets and B. I. Golubov},
     title = {Weighted integrability of multiplicative {Fourier} transforms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a5/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - B. I. Golubov
TI  - Weighted integrability of multiplicative Fourier transforms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 71
EP  - 81
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a5/
LA  - ru
ID  - TM_2010_269_a5
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A B. I. Golubov
%T Weighted integrability of multiplicative Fourier transforms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 71-81
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a5/
%G ru
%F TM_2010_269_a5
S. S. Volosivets; B. I. Golubov. Weighted integrability of multiplicative Fourier transforms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 71-81. http://geodesic.mathdoc.fr/item/TM_2010_269_a5/

[1] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[2] Bespalov M.S., “Multiplikativnye preobrazovaniya Fure”, Teoriya funktsii i priblizhenii, Tr. Saratov. zimn. shk. 1982 g., Ch. 2, Izd-vo SGU, Saratov, 1983, 39–42 | MR

[3] Golubov B.I., Volosivets S.S., “On the integrability and uniform convergence of multiplicative Fourier transforms”, Georgian Math. J., 16:3 (2009), 533–546 | MR | Zbl

[4] Kinukawa M., “Contractions of Fourier coefficients and Fourier integrals”, J. anal. math., 8 (1960), 377–406 | DOI | MR

[5] Boas R.P., Jr., “Fourier series with positive coefficients”, J. Math. Anal. and Appl., 17:3 (1967), 463–483 | DOI | MR | Zbl

[6] Móricz F., “Absolutely convergent Fourier integrals and classical function spaces”, Arch. Math., 91:1 (2008), 49–62 | DOI | MR | Zbl

[7] Boas R.P., Jr., “The integrability class of the sine transform of a monotonic function”, Stud. math., 44:3 (1972), 365–369 | MR | Zbl

[8] Liflyand E., Tikhonov S., “Extended solution of Boas' conjecture on Fourier transforms”, C. r. Math. Acad. sci. Paris., 346 (2008), 1137–1142 | DOI | MR | Zbl

[9] Bradley J.S., “Hardy inequalities with mixed norms”, Canad. Math. Bull., 21 (1978), 405–408 | DOI | MR | Zbl

[10] Burenkov V.I., “O tochnoi postoyannoi v neravenstve Khardi pri $0

1$ dlya monotonnykh funktsii”, Tr. MIAN, 194, 1992, 58–62 | MR | Zbl

[11] Gupta B.L., “Contraction of functions and Fourier transform”, Period. math. Hung., 15:1 (1984), 7–13 | DOI | MR | Zbl

[12] Osmanov G.I., “Nekotorye svoistva preobrazovanii Fure funktsii klassa $L^{(2)}_2(-\infty ,\infty )$”, Izv. AN AzSSR. Ser. fiz.-tekhn. i mat. nauk, 1967, no. 2, 24–32 | MR | Zbl