On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 63-70
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the Dirichlet problem for the Laplace equation in an infinite rectangular cylinder. Under the assumption that the boundary values are continuous and bounded, we prove the existence and uniqueness of a solution to the Dirichlet problem in the class of bounded functions that are continuous on the closed infinite cylinder. Under an additional assumption that the boundary values are twice continuously differentiable on the faces of the infinite cylinder and are periodic in the direction of its edges, we establish that a periodic solution of the Dirichlet problem has continuous and bounded pure second-order derivatives on the closed infinite cylinder except its edges. We apply the grid method in order to find an approximate periodic solution of this Dirichlet problem. Under the same conditions providing a low smoothness of the exact solution, the convergence rate of the grid solution of the Dirichlet problem in the uniform metric is shown to be on the order of $O(h^2\ln h^{-1})$, where $h$ is the step of a cubic grid.
@article{TM_2010_269_a4,
author = {E. A. Volkov},
title = {On a~grid-method solution of the {Laplace} equation in an infinite rectangular cylinder under periodic boundary conditions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {63--70},
year = {2010},
volume = {269},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a4/}
}
TY - JOUR AU - E. A. Volkov TI - On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2010 SP - 63 EP - 70 VL - 269 UR - http://geodesic.mathdoc.fr/item/TM_2010_269_a4/ LA - ru ID - TM_2010_269_a4 ER -
%0 Journal Article %A E. A. Volkov %T On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2010 %P 63-70 %V 269 %U http://geodesic.mathdoc.fr/item/TM_2010_269_a4/ %G ru %F TM_2010_269_a4
E. A. Volkov. On a grid-method solution of the Laplace equation in an infinite rectangular cylinder under periodic boundary conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 63-70. http://geodesic.mathdoc.fr/item/TM_2010_269_a4/
[1] Keldysh M.V., “O razreshimosti i ustoichivosti zadachi Dirikhle”, UMN, 1940, no. 8, 171–231
[2] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR
[3] Volkov E.A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MIAN, 105, 1969, 46–65 | Zbl
[4] Mikhailov V.P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR | Zbl
[5] Samarskii A.A., Andreev V.B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl