On the basis property of root vectors of a~perturbed self-adjoint operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 290-303.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study perturbations of a self-adjoint operator $T$ with discrete spectrum such that the number of its points on any unit-length interval of the real axis is uniformly bounded. We prove that if $\|B\varphi_n\|\le\mathrm{const}$, where $\varphi_n$ is an orthonormal system of eigenvectors of the operator $T$, then the system of root vectors of the perturbed operator $T+B$ forms a basis with parentheses. We also prove that the eigenvalue-counting functions of $T$ and $T+B$ satisfy the relation $|n(r,T)-n(r,T+B)|\le\mathrm{const}$.
@article{TM_2010_269_a23,
     author = {A. A. Shkalikov},
     title = {On the basis property of root vectors of a~perturbed self-adjoint operator},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {290--303},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a23/}
}
TY  - JOUR
AU  - A. A. Shkalikov
TI  - On the basis property of root vectors of a~perturbed self-adjoint operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 290
EP  - 303
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a23/
LA  - ru
ID  - TM_2010_269_a23
ER  - 
%0 Journal Article
%A A. A. Shkalikov
%T On the basis property of root vectors of a~perturbed self-adjoint operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 290-303
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a23/
%G ru
%F TM_2010_269_a23
A. A. Shkalikov. On the basis property of root vectors of a~perturbed self-adjoint operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 290-303. http://geodesic.mathdoc.fr/item/TM_2010_269_a23/

[1] Adduci J., Mityagin B., “Eigensystem of an $L_2$-perturbed harmonic oscillator is an unconditional basis”, Math. Nachr. (to appear) , arXiv: arXiv: 0912.2722v1 | Zbl

[2] Agranovich M.S., “O skhodimosti ryadov po kornevym vektoram operatorov, blizkikh k samosopryazhennym”, Tr. Mosk. mat. o-va, 41, 1980, 163–180 | MR | Zbl

[3] Agranovich M.S., “Spektralnye svoistva zadach difraktsii”: Voitovich N.N., Katsenelenbaum B.Z., Sivov A.N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 ; Agranovich M.S., Katsenelenbaum B.Z., Sivov A.N., Voitovich N.N., Generalized method of eigenoscillations in diffraction theory, Wiley–VCH, Weinheim, 1999 | MR | Zbl

[4] Birkhoff G.D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl

[5] Browder F.E., “On the spectral theory of elliptic differential operators. I”, Math. Ann., 142 (1961), 22–130 | DOI | MR | Zbl

[6] Djakov P., Mityagin B., “Bari–Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[7] Dunford N., “A survey of the theory of spectral operators”, Bull. Amer. Math. Soc., 64 (1958), 217–274 | DOI | MR | Zbl

[8] Glazman I.M., “O razlozhimosti po sisteme sobstvennykh elementov dissipativnykh operatorov”, UMN, 13:3 (1958), 179–181 | MR | Zbl

[9] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[10] Khardi G.G., Littlvud D.E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[12] Katsnelson V.E., “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funkts. analiz i ego pril., 1:2 (1967), 39–51 | MR

[13] Keldysh M.V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, DAN SSSR, 77:1 (1951), 11–14 | Zbl

[14] Keldysh M.V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[15] Kesselman G.M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matematika, 1964, no. 2, 82–93

[16] Levin B.Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[17] Livshits M.S., “O spektralnom razlozhenii lineinykh nesamosopryazhennykh operatorov”, Mat. sb., 34:1 (1954), 145–199 | MR | Zbl

[18] Markus A.S., “O razlozhenii po kornevykh vektoram slabo vozmuschennogo samosopryazhennogo operatora”, DAN SSSR., 142:3 (1962), 538–541 | MR | Zbl

[19] Markus A.S., Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[20] Markus A.S., Matsaev V.I., “Teoremy sravneniya spektrov lineinykh operatorov i spektralnye asimptotiki”, Tr. Mosk. mat. o-va, 45, 1982, 133–181 | MR | Zbl

[21] Mikhailov V.P., “O bazisakh Rissa v $L_2[0,1]$”, DAN SSSR, 114:5 (1962), 981–984

[22] Mukminov B.R., “O razlozhenii po sobstvennym funktsiyam dissipativnykh yader”, DAN SSSR, 99:4 (1954), 499–502 | MR | Zbl

[23] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[24] Riss F., Sekefalvi-Nad B., Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR

[25] Rozenblyum G.V., Solomyak M.Z., Shubin M.A., “Spektralnaya teoriya differentsialnykh operatorov”, Differentsialnye uravneniya s chastnymi proizvodnymi – 7, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 64, VINITI, M., 1989 | MR

[26] Shkalikov A.A., “O svoistve bazisnosti sobstvennykh funktsii obyknovennykh differentsialnykh operatorov s integralnymi kraevymi usloviyami”, Vestn. Mosk. un-ta. Matematika. Mekhanika, 1982, no. 6, 12–21 | MR | Zbl

[27] Shkalikov A.A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. sem. im. I.G. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[28] Shkalikov A.A., “Ellipticheskie uravneniya v gilbertovom prostranstve i sootvetstvuyuschie spektralnye zadachi”, Tr. sem. im. I.G. Petrovskogo, 14, 1989, 140–224 | Zbl

[29] Shkalikov A.A., “Teoremy tauberova tipa o raspredelenii nulei golomorfnykh funktsii”, Mat. sb., 123:3 (1984), 317–347 | MR | Zbl

[30] Tamarkin Ya.D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Tip. M.P. Frolovoi, Petrograd, 1917

[31] Weyl H., “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Ann., 71 (1912), 441–479 | DOI | MR | Zbl