Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_269_a18, author = {A. L. Skubachevskii}, title = {Asymptotic formulas for solutions of nonlocal elliptic problems}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {225--241}, publisher = {mathdoc}, volume = {269}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a18/} }
A. L. Skubachevskii. Asymptotic formulas for solutions of nonlocal elliptic problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 225-241. http://geodesic.mathdoc.fr/item/TM_2010_269_a18/
[1] Bitsadze A.V., Samarskii A.A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh kraevykh zadach”, DAN SSSR, 185:4 (1969), 739–740 | Zbl
[2] Samarskii A.A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Dif. uravneniya, 16:11 (1980), 1925–1935 | MR
[3] Skubachevskii A.L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Mat. sb., 129:2 (1986), 279–302 | MR
[4] Kondratev V.A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292 | Zbl
[5] Gurevich P.L., “Asimptotika reshenii nelokalnykh ellipticheskikh zadach v ploskikh uglakh”, Tr. sem. im. I.G. Petrovskogo, 23, 2003, 93–126 | Zbl
[6] Soldatov A.P., “Zadacha Bitsadze–Samarskogo dlya funktsii, analiticheskikh po Duglisu”, Dif. uravneniya, 41:3 (2005), 396–407 | MR | Zbl
[7] Skubachevskii A.L., Neklassicheskie kraevye zadachi. I, Sovr. matematika. Fund. napr., 26, Ros. un-t druzhby narodov, M., 2007 ; Неклассические краевые задачи. II, Совр. математика. Фунд. напр., 33, Рос. ун-т дружбы народов, М., 2009 | MR
[8] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial dufferential equations satisfying general boundary conditions. I”, Commun. Pure and Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl
[9] Gurevich P., “Smoothness of generalized solutions for higher-order elliptic equations with nonlocal boundary conditions”, J. Diff. Equat., 245:5 (2008), 1323–1355 | DOI | MR | Zbl