On the reconstruction of convolution-type operators from inaccurate information
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 181-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

We address the problem of optimal reconstruction of the values of a linear operator on $\mathbb R^d$ or $\mathbb Z^d$ from approximate values of other operators. Each operator acts as the multiplication of the Fourier transform by a certain function. As an application, we present explicit expressions for optimal methods of reconstructing the solution of the heat equation (for continuous and difference models) at a given instant of time from inaccurate measurements of this solution at other time instants.
@article{TM_2010_269_a14,
     author = {G. G. Magaril-Il'yaev and K. Yu. Osipenko},
     title = {On the reconstruction of convolution-type operators from inaccurate information},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--192},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a14/}
}
TY  - JOUR
AU  - G. G. Magaril-Il'yaev
AU  - K. Yu. Osipenko
TI  - On the reconstruction of convolution-type operators from inaccurate information
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 181
EP  - 192
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a14/
LA  - ru
ID  - TM_2010_269_a14
ER  - 
%0 Journal Article
%A G. G. Magaril-Il'yaev
%A K. Yu. Osipenko
%T On the reconstruction of convolution-type operators from inaccurate information
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 181-192
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a14/
%G ru
%F TM_2010_269_a14
G. G. Magaril-Il'yaev; K. Yu. Osipenko. On the reconstruction of convolution-type operators from inaccurate information. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 181-192. http://geodesic.mathdoc.fr/item/TM_2010_269_a14/

[1] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972

[2] Magaril-Ilyaev G.G., Osipenko K.Yu., “Ob optimalnom vosstanovlenii funktsionalov po netochnym dannym”, Mat. zametki, 50:6 (1991), 85–93 | MR

[3] Magaril-Ilyaev G.G., Tikhomirov V.M., “O neravenstvakh dlya proizvodnykh kolmogorovskogo tipa”, Mat. sb., 188:12 (1997), 73–106 | DOI | MR | Zbl

[4] Magaril-Ilyaev G.G., Tikhomirov V.M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[5] Melkman A.A., Micchelli C.A., “Optimal estimation of linear operators in Hilbert spaces from inaccurate data”, SIAM J. Numer. Anal., 16 (1979), 87–105 | DOI | MR | Zbl

[6] Magaril-Ilyaev G.G., Osipenko K.Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po koeffitsientam Fure, zadannym s pogreshnostyu”, Mat. sb., 193:3 (2002), 79–100 | DOI | MR | Zbl

[7] Magaril-Ilyaev G.G., Osipenko K.Yu., “Optimalnoe vosstanovlenie funktsii i ikh proizvodnykh po priblizhennoi informatsii o spektre i neravenstva dlya proizvodnykh”, Funkts. analiz i ego pril., 37:3 (2003), 51–64 | DOI | MR | Zbl

[8] Osipenko K.Yu., “Neravenstvo Khardi–Littlvuda–Polia dlya analiticheskikh funktsii iz prostranstv Khardi–Soboleva”, Mat. sb., 197:3 (2006), 15–34 | DOI | MR | Zbl

[9] Osipenko K.Yu., “O vosstanovlenii resheniya zadachi Dirikhle po netochnym iskhodnym dannym”, Vladikavkaz. mat. zhurn., 6:4 (2004), 55–62 | MR | Zbl

[10] Magaril-Il'yaev G.G., Osipenko K.Yu., Tikhomirov V.M., “On optimal recovery of heat equation solutions”, Approximation theory, A volume dedicated to B. Bojanov, eds. D.K. Dimitrov, G. Nikolov, R. Uluchev, Marin Drinov Acad. Publ. House, Sofia, 2004, 163–175 | MR

[11] Vysk N.D., Osipenko K.Yu., “Optimalnoe vosstanovlenie resheniya volnovogo uravneniya po netochnym nachalnym dannym”, Mat. zametki, 81:6 (2007), 803–815 | DOI | MR | Zbl

[12] Balova E.A., “Ob optimalnom vosstanovlenii reshenii zadachi Dirikhle po netochnym iskhodnym dannym”, Mat. zametki, 82:3 (2007), 323–334 | DOI | MR | Zbl

[13] Osipenko K.Yu., Wedenskaya E.V., “Optimal recovery of solutions of the generalized heat equation in the unit ball from inaccurate data”, J. Complexity, 23:4–6 (2007), 653–661 | DOI | MR | Zbl

[14] Magaril-Ilyaev G.G., Osipenko K.Yu., “Optimalnoe vosstanovlenie resheniya uravneniya teploprovodnosti po netochnym izmereniyam”, Mat. sb., 200:5 (2009), 37–54 | DOI | MR | Zbl