On the representation of a~function as an absolutely convergent Fourier integral
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 153-166.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new sufficient conditions for the representability of a function by an absolutely convergent Fourier integral in $\mathbb R^d$. These conditions are given in terms of the simultaneous behavior of a function and its derivatives at $\infty$. We test the sharpness of the conditions using well-known examples.
@article{TM_2010_269_a12,
     author = {E. R. Liflyand and R. M. Trigub},
     title = {On the representation of a~function as an absolutely convergent {Fourier} integral},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a12/}
}
TY  - JOUR
AU  - E. R. Liflyand
AU  - R. M. Trigub
TI  - On the representation of a~function as an absolutely convergent Fourier integral
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 153
EP  - 166
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a12/
LA  - ru
ID  - TM_2010_269_a12
ER  - 
%0 Journal Article
%A E. R. Liflyand
%A R. M. Trigub
%T On the representation of a~function as an absolutely convergent Fourier integral
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 153-166
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a12/
%G ru
%F TM_2010_269_a12
E. R. Liflyand; R. M. Trigub. On the representation of a~function as an absolutely convergent Fourier integral. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 153-166. http://geodesic.mathdoc.fr/item/TM_2010_269_a12/

[1] Bateman H., Erdélyi A., Higher transcendental functions, v. 2, McGraw Hill, New York, 1953 | Zbl

[2] Belinsky E.S., Dvejrin M.Z., Malamud M.M., “Multipliers in $L_1$ and estimates for systems of differential operators”, Russ. J. Math. Phys., 12:1 (2005), 6–16 | MR | Zbl

[3] Besov O.V., “K teoreme Khermandera o multiplikatorakh Fure”, Tr. MIAN, 173, 1986, 3–13 | MR | Zbl

[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[5] Beurling A., “On the spectral synthesis of bounded functions”, Acta math., 81 (1949), 225–238 | DOI | MR | Zbl

[6] Fefferman C., “Inequalities for strongly singular convolution operators”, Acta math., 124 (1970), 9–36 | DOI | MR | Zbl

[7] Liflyand E., “Necessary conditions for integrability of the Fourier transform”, Georgian Math. J., 16 (2009), 553–559 | MR | Zbl

[8] Liflyand E., Trigub R., Known and new results on absolute convergence of Fourier integrals:, Preprint CRM 859, Centre Recerca Mat., Barcelona, 2009

[9] Peetre J., New thoughts on Besov spaces, Duke Univ., Durham, 1976 | MR | Zbl

[10] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[11] Samko S.G., Kostetskaya G.S., “Absolute integrability of Fourier integrals”, Vestn. Ros. un-ta druzhby narodov. Matematika., 1994, no. 1, 138–168 | Zbl

[12] Stein E.M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton (NJ), 1970 | MR

[13] Stein E.M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton (NJ), 1971 | MR | Zbl

[14] Trigub R.M., “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. mat., 44:6 (1980), 1378–1409 | MR | Zbl

[15] Trigub R.M., “Nekotorye svoistva preobrazovaniya Fure mery i ikh primenenie”, Tr. Mezhdunar. konf. po teorii priblizheniya funktsii, Kiev, 1983 g., Nauka, M., 1987, 439–443

[16] Trigub R.M., “O sravnenii lineinykh differentsialnykh operatorov”, Mat. zametki, 82:3 (2007), 426–440 | DOI | MR | Zbl

[17] Trigub R.M., Belinsky E.S., Fourier analysis and approximation of functions, Kluwer, Dordrecht, 2004 | Zbl