On the representation of a~function as an absolutely convergent Fourier integral
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 153-166

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain new sufficient conditions for the representability of a function by an absolutely convergent Fourier integral in $\mathbb R^d$. These conditions are given in terms of the simultaneous behavior of a function and its derivatives at $\infty$. We test the sharpness of the conditions using well-known examples.
@article{TM_2010_269_a12,
     author = {E. R. Liflyand and R. M. Trigub},
     title = {On the representation of a~function as an absolutely convergent {Fourier} integral},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {153--166},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a12/}
}
TY  - JOUR
AU  - E. R. Liflyand
AU  - R. M. Trigub
TI  - On the representation of a~function as an absolutely convergent Fourier integral
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 153
EP  - 166
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a12/
LA  - ru
ID  - TM_2010_269_a12
ER  - 
%0 Journal Article
%A E. R. Liflyand
%A R. M. Trigub
%T On the representation of a~function as an absolutely convergent Fourier integral
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 153-166
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a12/
%G ru
%F TM_2010_269_a12
E. R. Liflyand; R. M. Trigub. On the representation of a~function as an absolutely convergent Fourier integral. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 153-166. http://geodesic.mathdoc.fr/item/TM_2010_269_a12/