On the second moduli of continuity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 150-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an inequality for the second moduli of continuity of continuous functions. Applying this inequality, we construct a nonnegative nonincreasing continuous function $\omega$ on $[0,+\infty)$ that vanishes at zero and is such that the function $\omega(\delta)/\delta^2$ decreases on $(0,+\infty)$ while $\omega$ is not asymptotically (as $\delta\to0$) equivalent to the second modulus of continuity of any continuous function.
@article{TM_2010_269_a11,
     author = {S. V. Konyagin},
     title = {On the second moduli of continuity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {150--152},
     publisher = {mathdoc},
     volume = {269},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_269_a11/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On the second moduli of continuity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 150
EP  - 152
VL  - 269
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_269_a11/
LA  - ru
ID  - TM_2010_269_a11
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On the second moduli of continuity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 150-152
%V 269
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_269_a11/
%G ru
%F TM_2010_269_a11
S. V. Konyagin. On the second moduli of continuity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function theory and differential equations, Tome 269 (2010), pp. 150-152. http://geodesic.mathdoc.fr/item/TM_2010_269_a11/

[1] Lebesgue H., “Sur la représentation trigonométrique approchée des fonctions satisfaisant à une condtition de Lipschitz”, Bull. Soc. math. France, 38 (1910), 184–210 | MR | Zbl

[2] Nikolskii S.M., “Ryad Fure funktsii s dannym modulem nepreryvnosti”, DAN SSSR, 52:3 (1946), 191–194

[3] Geit V.E., “O funktsiyakh, yavlyayuschikhsya vtorym modulem nepreryvnosti”, Izv. vuzov. Matematika, 1998, no. 9, 38–41 | MR | Zbl

[4] Geit V.E., “O tochnosti nekotorykh neravenstv v teorii priblizhenii”, Mat. zametki, 10:5 (1971), 571–582 | MR

[5] Geit V.E., “Teoremy vlozheniya dlya nekotorykh klassov periodicheskikh nepreryvnykh funktsii”, Izv. vuzov. Matematika, 1972, no. 4, 67–77 | MR | Zbl

[6] Shevchuk I.A., “Nekotorye zamechaniya o funktsiyakh tipa modulya nepreryvnosti poryadka $k\geq 2$”, Voprosy teorii priblizheniya funktsii i ee prilozhenii, In-t matematiki AN USSR, Kiev, 1976, 194–199