Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2010_268_a2, author = {A. A. Agrachev}, title = {Well-posed infinite horizon variational problems on a~compact manifold}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {24--39}, publisher = {mathdoc}, volume = {268}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a2/} }
A. A. Agrachev. Well-posed infinite horizon variational problems on a~compact manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 24-39. http://geodesic.mathdoc.fr/item/TM_2010_268_a2/
[1] Agrachev A. A., “Krivizna i giperbolichnost gamiltonovykh sistem”, Tr. MIAN, 256, 2007, 31–53 | MR | Zbl
[2] Agrachev A. A., Chittaro F. C., “Smooth optimal synthesis for infinite horizon variational problems”, ESAIM: Control Optim. and Calc. Var., 15 (2009), 173–188 | DOI | MR
[3] Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006, 142 pp.
[4] Wojtkowski M. P., “Magnetic flows and Gaussian thermostats on manifolds of negative curvature”, Fund. math., 163 (2000), 177–191 | MR | Zbl