Well-posed infinite horizon variational problems on a~compact manifold
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 24-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an effective sufficient condition for a variational problem with infinite horizon on a compact Riemannian manifold $M$ to admit a smooth optimal synthesis, i.e., a smooth dynamical system on $M$ whose positive semi-trajectories are solutions to the problem. To realize the synthesis, we construct an invariant Lagrangian submanifold (well-projected to $M$) of the flow of extremals in the cotangent bundle $T^*M$. The construction uses the curvature of the flow in the cotangent bundle and some ideas of hyperbolic dynamics.
@article{TM_2010_268_a2,
     author = {A. A. Agrachev},
     title = {Well-posed infinite horizon variational problems on a~compact manifold},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {24--39},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a2/}
}
TY  - JOUR
AU  - A. A. Agrachev
TI  - Well-posed infinite horizon variational problems on a~compact manifold
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 24
EP  - 39
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a2/
LA  - ru
ID  - TM_2010_268_a2
ER  - 
%0 Journal Article
%A A. A. Agrachev
%T Well-posed infinite horizon variational problems on a~compact manifold
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 24-39
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a2/
%G ru
%F TM_2010_268_a2
A. A. Agrachev. Well-posed infinite horizon variational problems on a~compact manifold. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 24-39. http://geodesic.mathdoc.fr/item/TM_2010_268_a2/

[1] Agrachev A. A., “Krivizna i giperbolichnost gamiltonovykh sistem”, Tr. MIAN, 256, 2007, 31–53 | MR | Zbl

[2] Agrachev A. A., Chittaro F. C., “Smooth optimal synthesis for infinite horizon variational problems”, ESAIM: Control Optim. and Calc. Var., 15 (2009), 173–188 | DOI | MR

[3] Pesin Ya. B., Lektsii po teorii chastichnoi giperbolichnosti i ustoichivoi ergodichnosti, MTsNMO, M., 2006, 142 pp.

[4] Wojtkowski M. P., “Magnetic flows and Gaussian thermostats on manifolds of negative curvature”, Fund. math., 163 (2000), 177–191 | MR | Zbl