Cohomological non-rigidity of generalized real Bott manifolds of height~2
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 252-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the following problem: When do two generalized real Bott manifolds of height 2 have isomorphic cohomology rings with $\mathbb Z/2$ coefficients and also when are they diffeomorphic? It turns out that in general cohomology rings with $\mathbb Z/2$ coefficients do not distinguish those manifolds up to diffeomorphism. This gives a negative answer to the cohomological rigidity problem for real toric manifolds posed earlier by Y. Kamishima and the present author. We also prove that generalized real Bott manifolds of height 2 are diffeomorphic if they are homotopy equivalent.
@article{TM_2010_268_a15,
     author = {M. Masuda},
     title = {Cohomological non-rigidity of generalized real {Bott} manifolds of height~2},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {252--257},
     publisher = {mathdoc},
     volume = {268},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2010_268_a15/}
}
TY  - JOUR
AU  - M. Masuda
TI  - Cohomological non-rigidity of generalized real Bott manifolds of height~2
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2010
SP  - 252
EP  - 257
VL  - 268
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2010_268_a15/
LA  - en
ID  - TM_2010_268_a15
ER  - 
%0 Journal Article
%A M. Masuda
%T Cohomological non-rigidity of generalized real Bott manifolds of height~2
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2010
%P 252-257
%V 268
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2010_268_a15/
%G en
%F TM_2010_268_a15
M. Masuda. Cohomological non-rigidity of generalized real Bott manifolds of height~2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations and topology. I, Tome 268 (2010), pp. 252-257. http://geodesic.mathdoc.fr/item/TM_2010_268_a15/

[1] Adams J. F., “Vector fields on spheres”, Ann. Math. Ser. 2, 75 (1962), 603–632 | DOI | MR | Zbl

[2] Atiyah M. F., “Thom complexes”, Proc. London Math. Soc. Ser. 3, 11 (1961), 291–310 | DOI | MR | Zbl

[3] Choi S., Masuda M., Suh D. Y., “Topological classification of generalized Bott towers”, Trans. Amer. Math. Soc., 362 (2010), 1097–1112 | DOI | MR | Zbl

[4] Husemoller D., Fiber bundles, Grad. Texts Math., 20, 3rd ed., Springer, Berlin, 1993 | Zbl

[5] Kamishima Y., Masuda M., “Cohomological rigidity of real Bott manifolds”, Alg. and Geom. Topol., 9 (2009), 2479–2502 | MR | Zbl

[6] Masuda M., Classification of real Bott manifolds, E-print, 2008, arXiv: 0809.2178

[7] Masuda M., Suh D. Y., “Classification problems of toric manifolds via topology”, Toric Topology, Proc. Intern. Conf. (Osaka, 2006), Contemp. Math., 460, Amer. Math. Soc., Providence, RI, 2008, 273–286 ; arXiv: 0709.4579 | DOI | MR | Zbl

[8] Milnor J. W., Stasheff J. D., Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, NJ, 1974 | MR | Zbl