On Indices of 1-Forms on Determinantal Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 119-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 1-forms on so-called essentially isolated determinantal singularities (a natural generalization of isolated singularities), show how to define analogs of the Poincaré–Hopf index for them, and describe relations between these indices and the radial index. For isolated determinantal singularities, we discuss properties of the homological index of a holomorphic 1-form and its relation to the Poincaré–Hopf index.
@article{TM_2009_267_a8,
     author = {S. M. Gusein-Zade and W. Ebeling},
     title = {On {Indices} of {1-Forms} on {Determinantal} {Singularities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a8/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - W. Ebeling
TI  - On Indices of 1-Forms on Determinantal Singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 119
EP  - 131
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a8/
LA  - ru
ID  - TM_2009_267_a8
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A W. Ebeling
%T On Indices of 1-Forms on Determinantal Singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 119-131
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a8/
%G ru
%F TM_2009_267_a8
S. M. Gusein-Zade; W. Ebeling. On Indices of 1-Forms on Determinantal Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 119-131. http://geodesic.mathdoc.fr/item/TM_2009_267_a8/

[1] Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves, V. 1, Grundl. Math. Wissensch., 267, Springer, New York, 1985 | DOI | MR | Zbl

[2] Ebeling W., Gusein-Zade S. M., “Radial index and Euler obstruction of a 1-form on a singular variety”, Geom. Dedicata, 113 (2005), 231–241 | DOI | MR | Zbl

[3] Ebeling W., Gusein-Zade S. M., “Chern obstructions for collections of 1-forms on singular varieties”, Singularity theory, eds. D. Chéniot et al., World Sci., Singapore, 2007, 557–564 | MR | Zbl

[4] Ebeling W., Gusein-Zade S. M., “Quadratic forms for a 1-form on an isolated complete intersection singularity”, Math. Ztschr., 252 (2006), 755–766 | DOI | MR | Zbl

[5] Ebeling W., Gusein-Zade S. M., “Indices of vector fields and 1-forms on singular varieties”, Global aspects of complex geometry, eds. F. Catanese et al., Springer, Berlin, 2006, 129–169 | DOI | MR | Zbl

[6] Ebeling W., Gusein-Zade S. M., Seade J., “Homological index for 1-forms and a Milnor number for isolated singularities”, Intern. J. Math., 15 (2004), 895–905 | DOI | MR | Zbl

[7] Frühbis-Krüger A., “Classification of simple space curve singularities”, Commun. Algebra, 27 (1999), 3993–4013 | DOI | MR | Zbl

[8] Hochster M., Eagon J. A., “Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci”, Amer. J. Math., 93 (1971), 1020–1058 | DOI | MR | Zbl

[9] Goryunov V. V., “Functions on space curves”, J. London Math. Soc., 61 (2000), 807–822 | DOI | MR | Zbl

[10] Greuel G.-M., “Der Gauß–Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214 (1975), 235–266 | DOI | MR | Zbl

[11] Greuel G.-M., Pfister G., Schönemann H., Singular, a computer algebra system for polynomial computations, http://www.singular.uni-kl.de/

[12] Hall M. (Jr.), Combinatorial theory, 2nd ed., J. Wiley Sons, New York etc., 1986 | MR | Zbl

[13] Mond D., van Straten D., “Milnor number equals Tjurina number for functions on space curves”, J. London Math. Soc., 63 (2001), 177–187 | DOI | MR | Zbl

[14] Pinkham H. C., Deformations of algebraic varieties with $G_m$ action, Astérisque, 20, Soc. math. France, Paris, 1974 | MR

[15] Seade J., Tibăr M., Verjovsky A., “Milnor numbers and Euler obstruction”, Bull. Brazil. Math. Soc. (N.S.), 36:2 (2005), 275–283 | DOI | MR | Zbl