Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2009_267_a8, author = {S. M. Gusein-Zade and W. Ebeling}, title = {On {Indices} of {1-Forms} on {Determinantal} {Singularities}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {119--131}, publisher = {mathdoc}, volume = {267}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a8/} }
TY - JOUR AU - S. M. Gusein-Zade AU - W. Ebeling TI - On Indices of 1-Forms on Determinantal Singularities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2009 SP - 119 EP - 131 VL - 267 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2009_267_a8/ LA - ru ID - TM_2009_267_a8 ER -
S. M. Gusein-Zade; W. Ebeling. On Indices of 1-Forms on Determinantal Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 119-131. http://geodesic.mathdoc.fr/item/TM_2009_267_a8/
[1] Arbarello E., Cornalba M., Griffiths P. A., Harris J., Geometry of algebraic curves, V. 1, Grundl. Math. Wissensch., 267, Springer, New York, 1985 | DOI | MR | Zbl
[2] Ebeling W., Gusein-Zade S. M., “Radial index and Euler obstruction of a 1-form on a singular variety”, Geom. Dedicata, 113 (2005), 231–241 | DOI | MR | Zbl
[3] Ebeling W., Gusein-Zade S. M., “Chern obstructions for collections of 1-forms on singular varieties”, Singularity theory, eds. D. Chéniot et al., World Sci., Singapore, 2007, 557–564 | MR | Zbl
[4] Ebeling W., Gusein-Zade S. M., “Quadratic forms for a 1-form on an isolated complete intersection singularity”, Math. Ztschr., 252 (2006), 755–766 | DOI | MR | Zbl
[5] Ebeling W., Gusein-Zade S. M., “Indices of vector fields and 1-forms on singular varieties”, Global aspects of complex geometry, eds. F. Catanese et al., Springer, Berlin, 2006, 129–169 | DOI | MR | Zbl
[6] Ebeling W., Gusein-Zade S. M., Seade J., “Homological index for 1-forms and a Milnor number for isolated singularities”, Intern. J. Math., 15 (2004), 895–905 | DOI | MR | Zbl
[7] Frühbis-Krüger A., “Classification of simple space curve singularities”, Commun. Algebra, 27 (1999), 3993–4013 | DOI | MR | Zbl
[8] Hochster M., Eagon J. A., “Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci”, Amer. J. Math., 93 (1971), 1020–1058 | DOI | MR | Zbl
[9] Goryunov V. V., “Functions on space curves”, J. London Math. Soc., 61 (2000), 807–822 | DOI | MR | Zbl
[10] Greuel G.-M., “Der Gauß–Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten”, Math. Ann., 214 (1975), 235–266 | DOI | MR | Zbl
[11] Greuel G.-M., Pfister G., Schönemann H., Singular, a computer algebra system for polynomial computations, http://www.singular.uni-kl.de/
[12] Hall M. (Jr.), Combinatorial theory, 2nd ed., J. Wiley Sons, New York etc., 1986 | MR | Zbl
[13] Mond D., van Straten D., “Milnor number equals Tjurina number for functions on space curves”, J. London Math. Soc., 63 (2001), 177–187 | DOI | MR | Zbl
[14] Pinkham H. C., Deformations of algebraic varieties with $G_m$ action, Astérisque, 20, Soc. math. France, Paris, 1974 | MR
[15] Seade J., Tibăr M., Verjovsky A., “Milnor numbers and Euler obstruction”, Bull. Brazil. Math. Soc. (N.S.), 36:2 (2005), 275–283 | DOI | MR | Zbl