Automorphisms of $P_8$ Singularities and the Complex Crystallographic Groups
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 97-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper completes the study of symmetries of parabolic function singularities with relation to complex crystallographic groups that was started by the first co-author and his collaborator. We classify smoothable automorphisms of $P_8$ singularities which split the kernel of the intersection form on the second homology. For such automorphisms, the monodromy groups acting on the duals to the eigenspaces with degenerate intersection form are then identified as some of complex affine reflection groups tabled by V. L. Popov.
@article{TM_2009_267_a6,
     author = {V. Goryunov and D. Kerner},
     title = {Automorphisms of $P_8$ {Singularities} and the {Complex} {Crystallographic} {Groups}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a6/}
}
TY  - JOUR
AU  - V. Goryunov
AU  - D. Kerner
TI  - Automorphisms of $P_8$ Singularities and the Complex Crystallographic Groups
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 97
EP  - 109
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a6/
LA  - en
ID  - TM_2009_267_a6
ER  - 
%0 Journal Article
%A V. Goryunov
%A D. Kerner
%T Automorphisms of $P_8$ Singularities and the Complex Crystallographic Groups
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 97-109
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a6/
%G en
%F TM_2009_267_a6
V. Goryunov; D. Kerner. Automorphisms of $P_8$ Singularities and the Complex Crystallographic Groups. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 97-109. http://geodesic.mathdoc.fr/item/TM_2009_267_a6/

[1] Arnold V. I., “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR | Zbl

[2] Arnold V. I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii: Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[4] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti. I: Lokalnaya i globalnaya teoriya, Dinamicheskie sistemy – 6, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 6, VINITI, M., 1988 | MR

[5] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti. II: Klasifikatsiya i prilozheniya, Dinamicheskie sistemy – 8, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 39, VINITI, M., 1989 | MR | Zbl

[6] Bourbaki N., Éléments de mathématique. Fasc. XXXIV: Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris, 1968 | MR

[7] Brieskorn E., “Die Monodromie der isolierten Singularitäten von Hyperflächen”, Manuscr. math., 2 (1970), 103–161 | DOI | MR | Zbl

[8] Brieskorn E., “Singular elements of semi-simple algebraic groups”, Actes Congrès Intern. Math., V. 2 (Nice, 1970), Gauthier-Villars, Paris, 1971, 279–284 | MR

[9] Givental A. B., “Osobye lagranzhevy mnogoobraziya i ikh lagranzhevy otobrazheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 33, VINITI, M., 1988, 55–112 | MR | Zbl

[10] Goryunov V. V., “Unitarnye gruppy otrazhenii, svyazannye s osobennostyami funktsii s tsiklicheskoi simmetriei”, UMN, 54:5 (1999), 3–24 | DOI | MR | Zbl

[11] Goryunov V. V., “Unitary reflection groups and automorphisms of simple hypersurface singularities”, New developments in singularity theory, Kluwer, Dordrecht, 2001, 305–328 | DOI | MR | Zbl

[12] Goryunov V. V., “Symmetric $X_9$ singularities and complex affine reflection groups”, Tr. MIAN, 258, 2007, 49–57 | MR | Zbl

[13] Goryunov V. V., Beins K. E., “Tsiklicheski ekvivariantnye osobennosti funktsii i unitarnye gruppy otrazhenii $G(2m,2,n)$, $G_9$ i $G_{31}$”, Algebra i analiz, 11:5 (1999), 74–91 | MR | Zbl

[14] Goryunov V. V., Man S. H., “The complex crystallographic groups and symmetries of $J_{10}$”, Singularity theory and its applications, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 55–72 | MR | Zbl

[15] Gusein-Zade S. M., “Gruppy monodromii izolirovannykh osobennostei giperpoverkhnostei”, UMN, 32:2 (1977), 23–65 | MR | Zbl

[16] Hughes M. C., “Complex reflection groups”, Commun. Algebra, 18 (1990), 3999–4029 | DOI | MR | Zbl

[17] Looijenga E., “On the semi-universal deformation of a simple-elliptic hypersurface singularity. Part II: The discriminant”, Topology, 17 (1978), 23–40 | DOI | MR | Zbl

[18] Malle G., “Presentations for crystallographic complex reflection groups”, Transform. Groups, 1:3 (1996), 259–277 | DOI | MR | Zbl

[19] Orlik P., Solomon L., “Singularities. II: Automorphisms of forms”, Math. Ann., 231 (1978), 229–240 | DOI | MR | Zbl

[20] Popov V. L., Discrete complex reflection groups, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniv. Utrecht, Utrecht, 1982, 89 pp. | MR | Zbl

[21] Shephard G. C., Todd J. A., “Finite unitary reflection groups”, Canad. J. Math., 6 (1954), 274–304 | DOI | MR | Zbl

[22] Slodowy P., Simple singularities and simple algebraic groups, Lect. Notes Math., 815, Springer, Berlin, 1980 | MR | Zbl

[23] Wall C. T. C., “A note on symmetry of singularities”, Bull. London Math. Soc., 12 (1980), 169–175 | DOI | MR | Zbl