Conservative Homoclinic Bifurcations and Some Applications
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 82-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We study generic unfoldings of homoclinic tangencies of two-dimensional area-preserving diffeomorphisms (conservative Newhouse phenomena) and show that they give rise to invariant hyperbolic sets of arbitrarily large Hausdorff dimension. As applications, we discuss the size of the stochastic layer of a standard map and the Hausdorff dimension of invariant hyperbolic sets for certain restricted three-body problems. We avoid involved technical details and only concentrate on the ideas of the proof of the presented results.
@article{TM_2009_267_a5,
     author = {A. Gorodetski and V. Kaloshin},
     title = {Conservative {Homoclinic} {Bifurcations} and {Some} {Applications}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {82--96},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a5/}
}
TY  - JOUR
AU  - A. Gorodetski
AU  - V. Kaloshin
TI  - Conservative Homoclinic Bifurcations and Some Applications
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 82
EP  - 96
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a5/
LA  - en
ID  - TM_2009_267_a5
ER  - 
%0 Journal Article
%A A. Gorodetski
%A V. Kaloshin
%T Conservative Homoclinic Bifurcations and Some Applications
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 82-96
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a5/
%G en
%F TM_2009_267_a5
A. Gorodetski; V. Kaloshin. Conservative Homoclinic Bifurcations and Some Applications. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 82-96. http://geodesic.mathdoc.fr/item/TM_2009_267_a5/