Poincar\'e Series and Monodromy of the Simple and Unimodal Boundary Singularities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 56-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary singularity is a singularity of a function on a manifold with boundary. The simple and unimodal boundary singularities were classified by V. I. Arnold and V. I. Matov. The McKay correspondence can be generalized to the simple boundary singularities. We consider the monodromy of the simple, parabolic, and exceptional unimodal boundary singularities. We show that the characteristic polynomial of the monodromy is related to the Poincaré series of the coordinate algebra of the ambient singularity.
@article{TM_2009_267_a3,
     author = {W. Ebeling},
     title = {Poincar\'e {Series} and {Monodromy} of the {Simple} and {Unimodal} {Boundary} {Singularities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {56--64},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a3/}
}
TY  - JOUR
AU  - W. Ebeling
TI  - Poincar\'e Series and Monodromy of the Simple and Unimodal Boundary Singularities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 56
EP  - 64
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a3/
LA  - en
ID  - TM_2009_267_a3
ER  - 
%0 Journal Article
%A W. Ebeling
%T Poincar\'e Series and Monodromy of the Simple and Unimodal Boundary Singularities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 56-64
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a3/
%G en
%F TM_2009_267_a3
W. Ebeling. Poincar\'e Series and Monodromy of the Simple and Unimodal Boundary Singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 56-64. http://geodesic.mathdoc.fr/item/TM_2009_267_a3/

[1] Arnold V. I., “Kriticheskie tochki funktsii na mnogoobrazii s kraem, prostye gruppy Li $B_k$, $C_k$, $F_4$ i osobennosti evolyut”, UMN, 33:5 (1978), 91–105 | MR | Zbl

[2] Arnold V. I., Vasilev V. A., Goryunov V. V., Lyashko O. V., Osobennosti. II: Klasifikatsiya i prilozheniya, Dinamicheskie sistemy – 8, Itogi nauki i tekhniki. Sovr. probl. matematiki. Fund. napr., 39, VINITI, M., 1989 | MR | Zbl

[3] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii: Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[4] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii: Monodromiya i asimptotiki integralov, Nauka, M., 1984 | MR

[5] Bourbaki N., Éléments de mathématique. Fasc. XXXIV: Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Hermann, Paris, 1968 | MR

[6] Chmutov S., Scherback I., “Dynkin diagrams of dual boundary singularities are dual”, J. Alg. Geom., 3 (1994), 449–462 | MR | Zbl

[7] Dolgachev I. V., “Faktor-konicheskie osobennosti kompleksnykh poverkhnostei”, Funkts. analiz i ego pril., 8:2 (1974), 75–76 | MR | Zbl

[8] Ebeling W., “Milnor lattices and geometric bases of some special singularities”, Nœuds, tresses et singularités, Monogr. Enseign. Math., 31, ed. C. Weber, Enseign. Math. Univ. Genève, Genève, 1983, 129–146 | MR | Zbl

[9] Ebeling W., “Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity”, Manuscr. math., 107 (2002), 271–282 | DOI | MR | Zbl

[10] Ebeling W., “The Poincaré series of some special quasihomogeneous surface singularities”, Publ. Res. Inst. Math. Sci., 39, Kyoto Univ., 2003, 393–413 | DOI | MR | Zbl

[11] Ebeling W., Ploog D., “McKay correspondence for the Poincaré series of Kleinian and Fuchsian singularities”, Math. Ann. (to appear)

[12] Gabrielov A. M., “Diagrammy Dynkina unimodalnykh osobennostei”, Funkts. analiz i ego pril., 8:3 (1974), 1–6 | MR | Zbl

[13] Lenzing H., de la Peña J. A., Extended canonical algebras and Fuchsian singularities, E-print , 2006 arxiv: math/0611532

[14] Matov V. I., “Ob unimodalnykh rostkakh funktsii na mnogoobrazii s kraem”, Funkts. analiz i ego pril., 14:1 (1980), 69–70 | MR | Zbl

[15] McKay J., “Graphs, singularities, and finite groups”, The Santa Cruz conference on finite groups, Proc. Symp. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 183–186 | DOI | MR

[16] Slodowy P., Simple singularities and simple algebraic groups, Lect. Notes Math., 815, Springer, Berlin, 1980 | MR | Zbl

[17] Slodowy P., “Sur les groupes finis attachés aux singularités simples”, Introduction à la théorie des singularités, II, Trav. Cours, 37, Hermann, Paris, 1988, 109–126 | MR

[18] Stekolshchik R., Kostant's generating functions, Ebeling's theorem and McKay's observation relating the Poincaré series, E-print , 2006 arxiv: math/0608500

[19] Stekolshchik R., Notes on Coxeter transformations and the McKay correspondence, Springer, Berlin–Heidelberg, 2008 | MR | Zbl