Global Topological Invariants of Stable Maps from 3-Manifolds to~$\mathbb R^3$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 214-225

Voir la notice de l'article provenant de la source Math-Net.Ru

With any stable map from a 3-manifold to $\mathbb R^3$, we associate a graph with weights in its vertices and edges. These graphs are $\mathcal A$-invariants from a global viewpoint. We study their properties and show that any tree with zero weights in its vertices and aleatory weights in its edges can be the graph of a stable map from $S^3$ to $\mathbb R^3$.
@article{TM_2009_267_a16,
     author = {C. Mendes de Jesus and R. Oset Sinha and M. C. Romero Fuster},
     title = {Global {Topological} {Invariants} of {Stable} {Maps} from {3-Manifolds} to~$\mathbb R^3$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {214--225},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a16/}
}
TY  - JOUR
AU  - C. Mendes de Jesus
AU  - R. Oset Sinha
AU  - M. C. Romero Fuster
TI  - Global Topological Invariants of Stable Maps from 3-Manifolds to~$\mathbb R^3$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 214
EP  - 225
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a16/
LA  - en
ID  - TM_2009_267_a16
ER  - 
%0 Journal Article
%A C. Mendes de Jesus
%A R. Oset Sinha
%A M. C. Romero Fuster
%T Global Topological Invariants of Stable Maps from 3-Manifolds to~$\mathbb R^3$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 214-225
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a16/
%G en
%F TM_2009_267_a16
C. Mendes de Jesus; R. Oset Sinha; M. C. Romero Fuster. Global Topological Invariants of Stable Maps from 3-Manifolds to~$\mathbb R^3$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 214-225. http://geodesic.mathdoc.fr/item/TM_2009_267_a16/