Investigation of the Geodesic Flow on an Infinite-Dimensional Lie Group by Means of the Coadjoint Action Operator
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 204-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a representation of the Euler equations as the geodesic flow on an infinite-dimensional Lie group. In these terms, we establish properties of solutions, which are provided by local existence and uniqueness theorems, at a limit point.
@article{TM_2009_267_a15,
     author = {A. M. Lukatsky},
     title = {Investigation of the {Geodesic} {Flow} on an {Infinite-Dimensional} {Lie} {Group} by {Means} of the {Coadjoint} {Action} {Operator}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {204--213},
     publisher = {mathdoc},
     volume = {267},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2009_267_a15/}
}
TY  - JOUR
AU  - A. M. Lukatsky
TI  - Investigation of the Geodesic Flow on an Infinite-Dimensional Lie Group by Means of the Coadjoint Action Operator
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2009
SP  - 204
EP  - 213
VL  - 267
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2009_267_a15/
LA  - ru
ID  - TM_2009_267_a15
ER  - 
%0 Journal Article
%A A. M. Lukatsky
%T Investigation of the Geodesic Flow on an Infinite-Dimensional Lie Group by Means of the Coadjoint Action Operator
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2009
%P 204-213
%V 267
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2009_267_a15/
%G ru
%F TM_2009_267_a15
A. M. Lukatsky. Investigation of the Geodesic Flow on an Infinite-Dimensional Lie Group by Means of the Coadjoint Action Operator. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Singularities and applications, Tome 267 (2009), pp. 204-213. http://geodesic.mathdoc.fr/item/TM_2009_267_a15/

[1] Lukatskii A. M., “Gruppovoi podkhod v dinamike sploshnoi sredy”, Nauch. vestn. MGTU GA, 100, 2006, 114–121

[2] Lukatskii A. M., “Gruppovoi podkhod v dinamike neszhimaemoi zhidkosti”, Nauch. vestn. MGTU GA. Matematika i fizika, 114, 2007, 42–49

[3] Arnold V. I., Khesin B. A., Topologicheskie metody v gidrodinamike, MTsNMO, M., 2007, 392 pp.

[4] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92 (1970), 102–163 | DOI | MR | Zbl

[5] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | MR | Zbl

[6] Lukatskii A. M., “Gruppovoi podkhod v dinamike sploshnoi sredy”, Differentsialnye uravneniya i smezhnye voprosy, Tez. dokl. Mezhdunar. konf., posv. pamyati I. G. Petrovskogo, XXII sovm. zased. Mosk. mat. o-va i sem. I. G. Petrovskogo (Moskva, 21–26 maya 2007 g.), Izd-vo MGU, M., 2007, 178

[7] Lukatskii A. M., “Issledovanie geodezicheskogo potoka na gruppe sokhranyayuschikh ob'em diffeomorfizmov s ispolzovaniem operatora koprisoedinennogo deistviya”, Analiz i osobennosti, Tez. dokl. Mezhdunar. konf., posv. 70-letiyu V. I. Arnolda (MIAN, Moskva, 20–24 avg. 2007 g.), Izd. MIRAN, M., 2007, 72–74

[8] Khesin B. A., “Topological fluid dynamics”, Not. Amer. Math. Soc., 52 (2005), 9–19 | MR | Zbl